

MOOS Integration and Sea Tests of a Novel Reacquire/Identify Algorithm

Matthew Bays Virginia Tech Signe Redfield J.F. Kamath NSWC-Panama City

Approved for public release. Distribution is unlimited.

Outline

• Clustered Reacquire/Identify Problem Overview

- Brief overview of NSWC Solution
- Performance statistics

MOOS-IvP Implementation

- Stand-alone MOOS Module
- Dynamic Helm Behavior Submodule

MOOS-equipped REMUS Sea Tests

Problem Overview

- Given:
 - N Target Position
 Estimates
 - Task: Cover targets from
 M aspects
- Terminology
 - Aspect (colored)
 - Swath (shaded)
 - Aspect Angle

Problem Overview

• Standard Search

- Treats targets individually
- Does not take advantage of cluster geometry
- Time consuming
- Custom Operator Search
 - Not Standardized
 - Experience based
 - No performance guarantees

Standard vs. Clustered RID Patterns

• 5 Targets, 4 Aspects.

Problem Overview

- Clustered RID Questions
 - What is the optimal initial aspect angle?
 - How do we choose the number/location of swaths?

Algorithm Overview

NSWC Solution: PROPS

Algorithm Overview

• What is PROPS?

- Probabilistic
 Reacquire/identify
 Optimal Path Selection
 algorithm
- Covers multiple targets in a given aspect (faster)
- Groups swaths for shortest travel time
- Probabilistically determines number of sweeps required

Algorithm Overview

- Choosing the aspect angle
 - Analysis & monte carlo simulations suggest minimizing width of primary aspect approximately minimizes overall number of swaths
 - Found via normalized minimax regression
 - Useful for large numbers of targets
- Choosing the swaths in an aspect
 - Iterative aspect planning algorithm

Aspect Angle

Normalized Minimax Regression ٠

- Standard regression penalizes y direction error
- NMR penalizes L₂ distance from furthest target to aspect line

$$\mathbf{s}^* = \underset{\mathbf{s}}{\arg\min\max_{i=1...N}} \frac{1}{2} \frac{(z_i - ax_i + b)^2}{a^2 + 1}$$

$$* = \arg \min_{s} \min_{i=1...N} \frac{1}{2} \frac{(z_i - ax_i + b)^2}{a^2 + 1}$$

$$s = \begin{bmatrix} a \\ b \end{bmatrix}$$
 Aspect

 $\hat{\mathbf{x}}_i = \begin{vmatrix} x_i \\ z_i \end{vmatrix}$

slope and offset

Target Estimate

Aspect Planning

• Gaussian Mixture PDF of target locations

$$p(x \mid \hat{\mathbf{x}}_{1...N}) = \frac{1}{N} \sum_{i=1}^{N} Normal(\widetilde{x}_i, \sigma_i)$$

 \widetilde{X}_{i} Target *i*'s x coordinate in the direction of the aspect

Aspect Planning

Density Function

Sensor Profile

Convolution

- Objective function
 - Convolution of sensor profile and target Gaussian mixture
 - Choose swath that optimizes this function
 - Recalculate PDF
 - Calculate probability of missing a target and iterate
 - Stop when desired threshold probability is reached

Standard vs. Clustered RID Patterns

Clustered path requires 68.8% of standard path's distance

Algorithm Results

• Comparison plots for 10 Targets, 3 Aspects

• Clustered path requires 74% of standard path's distance.

Algorithm Results

- On average, PROPS algorithm requires
 - 16% less distance traveled
 - 30% fewer turns
 - Probability guarantees

MOOS-IvP Implementation

- Current Builds
 - Static MOOS Module
 - Independent MOOS module
 - Triggered using posts to MOOS Database
 - Dynamic Helm Behavior Submodule
 - Submodule of BHV_RIdentify
 - Uses pattern format found in MOOS-IvP-MCM Library

UrginiaTech Invent the Future Stand-alone MOOS Module Process Flow

• Part of NSWC UCCI Implementation

pROPS Processing

- pRIDManager posts clusters of targets to MOOS Database
- pROPS
 - listens for target list
 - Processes target list and returns waypoint list for vehicle
 - Posts waypoint list to MOOS Database

MOOS-IvP Implementation

pMarine Viewer Output

Behavior Submodule

- BHV_RIdentify
 - Part of the MOOS-IvP-MCM Library
 - Creates standard RID pattern
 - Allows for customized patterns via patternGenerator
- PGEN_PROPS
 - BHV_RIdentify pattern implementing PROPS
 - Takes advantage of the BHV_Ridentify
 - Clustering
 - Unique RID Objective functions

Pattern Generation Algorithm Flow

MOOS-IvP Implementation

pMarine Viewer Output

Sea Tests

- REMUS 100 AUV
 - Backseat-driver onboard computer
 - Equipped with Open Suse Linux

WirginiaTech Invent the Future Demonstration Setup

Sea Tests

- Same target points used in all tests
 - 3 clusters of 1, 2, and 3 simulated targets
 - 3 Aspects
- pROPS MOOS Module was sea tested in March 2010
- 2 Baseline RID tests conducted in June 2010
 - Standard Star Pattern over each target
 - Human operator attempting to minimize time/turns

Standard Star Pattern

Operator-generated Star Pattern

PROPS-generated Star Pattern

2-Target Comparison

Results

- After Post-Processing & Normalization
 - Standard Pattern: 46.6 minutes
 - Human-operator Pattern: 37.6 minutes
 - Additionally required 11 minutes of operator analysis
 - PROPS Pattern: 36.7 minutes
- PROPS required 78.7% of the time required by the standard pattern

Conclusions

- Developed an algorithm to optimize the clustered Reacquire/Identify problem
 - 16% more efficient than standard RID methods for travel distance
 - 30% more efficient in number of turns
 - Probabilistic performance guarantees
- Implemented using two approaches in MOOS-IvP
- Sea tests demonstrate functionality and overall efficiency versus standard RID and human optimization

Future Work

- Sea test PROPS dynamic helm behavior pattern
- Fully vet the PROPS algorithm for inclusion in MOOS-IvP-MCM library
- Perform overall demonstration of UCCI project

Questions?

Standard Star Pattern

Operator-generated Pattern

Operator-generated Pattern Coverage Field Experiment

PROPS-generated Pattern

