

 1

Click to add title

Native LabVIEW MOOS interfaceNative LabVIEW MOOS interface

Alexander SedunovAlexander Sedunov

 2

Native LabVIEW MOOS interfaceNative LabVIEW MOOS interface

➔ MOOS communication library based only on built-in

Labview functions

MOOSDB

MOOSApp
MOOSInstrument

We have developed a communication framework by
replicating the essential functionality of MOOSLib
class CMOOSCommClient in Labview environment,
relying solely on built-in functions.

We will talk about
● Why it is desirable to have the functionality of

Labview
● Why we took this implemenation approach
● What it will take to maintain this interface
● And will show one of our internal tools which is

based on this framework

 4

Why use NI LabVIEW

➔ Rapid prototyping

➔ Hardware interfacing

➔ Instant portability to

supported platforms

National Instruments LabVIEW™ has gained
popularity as a platform for engineers and scientists
and integrating it with MOOS allows for the easy
development of graphical MOOS utilities in an
environment having access to vast libraries for
control, communication, data acquisition, signal
processing and ability to run on many platforms
including Windows, Linux, Mac OS X.

 5

Virtual Instruments (VI)

➔ Programs in Labview are called

”Virtual Instruments”

➔ Consist of diagram and Front

Panels

The concept of programming in Labview is quiete
unconventional. Labview programs are called
”Virtual Instruments”.

 They consist of diagrams and front panels. The
diagrams contain the actual programs, in graphical
language ”G” and front panels contain the user
interface.

 6

The Native MOOS Interface API

➔ Click to add an outline

Only 6 VIs

We have created an MOOS API for Labview, which
consists of only 6 Vis, which need to be includes in
a typical application to exchange data with
MOOSDB.

 7

Sample LabVIEW diagram

➔ Click to add an outline

You can see a diagram of a skeletal application
which subscribes to multiple MOOS variables and
updates corresponding variables in Labview.

As you can see it basically consists of initializing the
client, giving it the list of variables for it to subscribe
and two loops, which in Labview imply two separate
threads. One is over a function which performs all
the client work, including connection and
handshake, the other loop is merely a consumer of
messages generated by the first, sorting the
notifications by key into appropriate variables.

MOOS libraries provide many tool:, there is
infrastructure for most tasks of a robotic platform.

However the external communication of a MOOS
application is confined to a single class: the
MOOSCommClient, which allows it to join a MOOS
community and share data through MOOSDB.

Our goal is to allow Labview applications to join a
MOOS community. The bare minimum requirement
for that is to provide it with some implementation of
CMOOSCommClient.

 10

Alternative ways of integration

➔ Call iMatlab via ActiveX

➔ Use CIN

(Code Interface Node)

➔ Reimplement

MOOSClient in Labview

Use LibMOOS?

Yes No

When we approached the problem we had two ways
of proceeding. We could make some interface for
MOOS libraries to to Labview, having the
advantage that if any new development will happen
which will change the interface we could just
recompile to integrate with future versions of
MOOS.

Another way is to replicate the protocol using the
Labview functionality.

Further we consider those two avenues in detail.

 11

Call iMatlab via ActiveX

➔ ActiveX is Windows only

➔ Considerable overhead

➔ Only one instance per

computer!

If both Matlab and Labview are available on the same
computer it is easy to use the pre-existing iMatlab,
a MOOS instrument compiled as a MATLAB
Executable (MEX), which can be run using
Labview's "Matlab Script Node", a mechanism
based on connecting to ActiveX server provided by
Matlab. This has notable limitations: iMatlab allows
to initialize only one global instance per computer,
meaning that all applications will have only one
connection to single MOOSDB and if another client
tries to initialize there will be a conflict. The
functionality is only available on Windows plus the
overhead to exchange data between Labview and
Matlab is very considerable, making this solution
applicable only for uses not requiring high
performance.

 12

Code Interface Node

➔ Single entry point

➔ Callbacks for loading and

unloading VI

➔ Everything has to be

encapsulated into single

function

Code Interface Node

Labview provides many ways to call external code in
shared libraries, ActiveX objects and using a Code
Interface Node (CIN). The latter is in essence a
special format of compiled code which can be
embedded into Labview as a VI, it has several
special entry points which are called whenever
certain events, such as aborting execution by user
occur, enabling to perform "housekeeping"
necessary. CIN similarly to MEX can implement
only a single function which will have to wrap all the
functionality, so while it is possible create an
interface, it will be impractical to manage more than
one instance of a MOOSClient thus imposing same
limitations as iMatlab.

Labview also able to use ActiveX and creating a
wrapper with this technology can be seen as way to
maintain multiple instances, but this automatically
limits us to only using Windows platform.

 13

Reimplement MOOSClient in Labview

➔ Resources managed automatically

➔ Unlimited instances per machine

➔ Low-level Vis exposed

➔ Click to add an

outline

The last option is to use the built-in functions of
Labview to mimic the protocol used by MOOS. As a
result the Labview program can be seamlessly
transferred between all platforms which are
supported. By relying on Just-In-Time native code
compilation Labview achieves high performance, so
the processing overhead introduced is minimal.
There is a very developed infrastructure in Labview
for management of resources such as sockets and
memory as well for concurrent execution and
managing instances of virtual instruments, making
it easy to incorporate several MOOS instruments
into one application. A separate package called
"Application Builder" enables to create executable
files which can be run on any computer where
Labview Runtime can be installed, the
implementation we provide relies only on "Base
Package" functionality and thus requires only
minimal runtime with no additional packages.

 14

Reimplement MOOSClient in Labview

Low-level VIs exposed to developerLow-level VIs exposed to developer

Top-level Protocol Packet manipulation

Call hierarchy diagram

Another important benefit is that such implementation
automatically exposes all the intermediate low-level
functions for MOOS communication. This way we
have more flexibility than wrapping high-level
MOOS classes would allow, for example the
functions used to serialize MOOS messages can
be easily reused to forward MOOS data structures
via different protocols such as UDP or even entirely
different communication media than Internet.

To have a better idea, why such reimplementation is
a viable solution, let us take a look at the
functionality provided by MOOS. Many features are
cross-platform implementations of such functions
as treads, network sockets, serialization, time it
also uses some C++ STL data structures which are
needed to reimplement it. Now if we take a look at
the functionality Labview provides, we can see
what most of this infrastructure is already there, so
there is no effort involved in providing most of it to a
program mimicking the protocol.

 16

Replicating ClientThread

Outbox Empty?
Add

NULL Message

Serialize outbox and send

Receive packet

Post messages to inbox

Client exception

Return true

Return false

Free resources

OnDisconnect()
callback

Sleep 1/Frequency seconds

DoClientWork()

What is left is to recreate the functionality of
CMOOSCommClient, which at high level is not very
complicated.

 17

Maintaining separate implemenatation

of interface

➔ Protocol went unchanged

for long

➔ Implementation is confined

to few functions

Files to monitor between

versions:

➔ MOOSCommClient.cpp/.h

➔ MOOSCommObject.cpp/.h

➔ MOOSCommPkt.cpp/.h

➔ MOOSMsg.cpp/.h

A trade-off of this method is that is that the
implementation will have to be updated separately
with any changes to the MOOS communication
protocol, but availability of source code makes it a
simple task. The minimalistic approach for
integration minimizes the dependency on the
changes in modules of MOOS. There are just a few
functions replicated from the total of 4 source files,
which with any update will have to be compared to
the versions on which the implementation is based.

 18

Demo: LabVIEW-based vehicle attitude

display

Labview makes it easy to develop graphical tools. For
example it was easy for us to develop a tool which
monitors the attitude of a vehicle during a mission.

With it we could easily analyse asyncronous logs
produced by pLogger by simply looking at 3D
model of the vehicle instead of a set of graphs.

 19

Acknowledgement

➔ This work was supported by ONR project

#N00014-05-1-0632: Navy Force Protection Technology

Assessment Project

➔ This work would have been impossible without the efforts

of Paul Newman and all the contributors to MOOS

development.

