

Buying and MOOSifying Two USVs in 2008/2009

Thomas J. Pastore Stefano Fioravanti Arjan Vermeij 26 August 2010

NATO OTAN Primary Objective (2008)

- Re-acquisition of divers using USV
- Vessel is autonomously driven
- Once in position operator can
 - Classify
 - Warn
 - Closely observe

Performance Specifications

- Shallow draft
- Smallish and quiet
- Good low-speed handling

NATO OTAN Secondary Objectives (2009)

- Surface missions
 - Surface contact intercept/escort
 - Inspection of surface objects
- Cooperative behaviours
- Avoidance and coexistence in harbour

OTAN Performance Specifications

	accept threshold	desireable
Max Speed	6 knots	up to 20 kts
Idle Speed	1 knot	zero
Reverse Speed	NR	up to 6 kts
Weight	600 kg	less is better
Length	5.5 meters	shorter is better
Draft	1 meter	shallower is better
Payload Weight	40 kg	up to 100 kg
Payload Volume	40 liters	up to 100 liters
Endurance	2 hours @ 4 kts	8 hours @ 4 kts

Performance Specifications

- Required
 - Control and Telemetry
 - Video camera
- Desired
 - Advanced Control and Telemetry
 - "Scalable and Hierarchical" autonomy
 - Better control/telemetry link
 - Longer range
 - Higher data rate

SeaRobotics catamaran

Gemellina

Mandarina

OTAN Performance Specifications

	accept threshold	Mandarina
Max Speed	6 knots	up to 8 kts
Idle Speed	1 knot	0.5 knot
Reverse Speed	NR	burst few knots
Weight	600 kg	460 kg
Length	5.5 meters	4.6 meters
Draft	1 meter	~ 50 cm
Payload Weight	40 kg	> 100 kg
Payload Volume	40 liters	> 100 liters
Endurance	2 hours @ 4 kts	> 8 hours @ 4 kts

OTAN Performance Specifications

	accept threshold	Gemellina
Max Speed	6 knots	up to 10 kts
Idle Speed	1 knot	zero
Reverse Speed	NR	up to 4 kts
Weight	600 kg	125 kg
Length	5.5 meters	4 meters
Draft	1 meter	< 50 cm
Payload Weight	40 kg	100 kg
Payload Volume	40 liters	100 liters
Endurance	2 hours @ 4 kts	~ 8 hours @ 4 kts

Details on Autonomy...

Mandarina:

- SPECTRE, dedicated processor as front-seat
- NMEA interface
- Custom extensions to NMEA
- NURC added second processor

Gemellina:

- dedicated processor as front-seat
- NMEA interface
- Custom extensions to NMEA
- Second TS7800
 ARM available as backseat

Mandarina's Autonomy

 SPECTRE housed in steering console

backseat
 processor with
 necessary
 interfaces
 easily added

Figure supplied by H-Scientific Ltd

Gemellina's Autonomy

 BCU built around TS7800 ARM

NATO

OTAN

 Second TS7800
 supplied,
 became
 backseat
 processor

Figure supplied by SeaRobotics Corp

Details on Autonomy...

- Decision to run MOOS on TS-7800 ARM
- Kept Gemellina
 - Light
 - Simple
 - Power-efficient
- Porting software presented some challenges...

NATO OTAN Running MOOS on TS-7800

- zlib, gsl, boost, libxml2, libxslt
 - Downloaded source and cross-compiled
- boost libraries
 - Cross-compiled using BoostJam
- MOOS, IvP, parts of moos-ivp-local and nurclocal
 - Cmake as normal with additional flags related to choice of compiler

h-scientific

Operator

0.0 Set GS

Steering

<> Plan View

n

NURC

Sensor Interfaces

- OEM sensor software used in most cases
- Laser scanner OEM provided an interface to which an application was written
- Radar "integration" has not yet been possible

Competitive Bidding Process + MOOS

- Good for NURC
- Good for MOOS community
- Good for winning bidders