
Michael R. Benjamin
NAVSEA, Division Newport RI

Phone: 401-832-4148
Email: michael.r.benjamin@navy.mil

The IvP Helm and New Features
of MOOS-IvP 4.1

Approved for public release; Distribution is unlimited

Acknowledgments

This work is the product of a multi-year collaboration between the Center for Advanced System
Technologies (CAST), Code 2501, of the Naval Undersea Warfare Center in Newport Rhode Island
and the Department of Mechanical Engineering and the Computer Science and Artificial Intelligence
Laboratory (CSAIL) at the Massachusetts Institute of Technology in Cambridge Massachusetts, and
the Oxford University Mobile Robotics Group.

The IvP Helm autonomy software and the basic research involved in the interval programming
model for multi-objective optimization has been developed under support from ONR Code 311
(Program Managers Dr. Don Wagner and Dr. Behzad Kamgar-Parsi). Prior prototype development
of IvP concepts benefited from the support of the In-house Laboratory Independent Research (ILIR)
program at the Naval Undersea Warfare Center in Newport RI.

Sponsors:

Collaborators:

•  The IvP Helm and Architecture Motivations

•  New capabilities in Release 4.1

•  Plans for Development

Outline

Component Technologies in an
Unmanned System

ACOMMS

Sensors

Compute-Power

Platforms

Autonomy Platforms are becoming cheaper, smaller
and able to persist longer.

Sensors are becoming smaller, more
capable and cheaper - available on more
platforms.

Computing power on-board is making live
sensor processing and decision making
based on sensors possible.

Acoustic communications between
vehicles is making collaboration between
vehicles possible and contributing to greater
deployment persistence.

Each trend affects what is required and
desired from the Autonomy System

Unmanned Vehicles and
System Complexity and Cost

Deterministic/Canned Adaptive/Dynamic Collaborative

ACOMMS
Sensors

Compute-Power

Platforms ACOMMS
Sensors

Compute-Power

Platforms ACOMMS
Sensors

Compute-Power

Platforms

1995 2005 2010

System
Complexity
and Cost

Autonomy Autonomy

Autonomy
Capability:

Critical maturity level
Critical
Components:

Time:

Analogy to a PC in 1985
-  The machine dominated the cost.
-  Few choices in software.

$$$$

Conclusions Drawn from Observing
Current Trends

•  Autonomy/software development needs to be nimble.
 Why? Platforms, hardware, communications technology and missions evolve quickly.

 - Platform independence is key.
 - Not beholden to any one software provider
 - The infrastructure should be non-proprietary

•  S&T Development and Procurement need to be mindful of software costs.
 Why? This will be the dominant part of the overall vehicle cost as autonomy matures.

 - cost of initial development
 - cost of upgrades
 - cost of validation
 - cost of not being able to utilize the most effective algorithms due to proprietary issues.

•  Nested Capabilities is key to controlling software costs and rapid development
 Why? No single organization has the expertise to build the most effective system.

 - Three software tiers: (a) public (b) limited distribution (c) proprietary or classified.
 - This is not just “software re-use”.
 - There is no central policy maker, only de facto standards.

MOOS-IvP
The “3-Architecture” Autonomy Paradigm

#1 – Separation of Vehicle Autonomy from the Physical Platform

#2 – Separation of the Autonomy System Components

#3 – Separation of Autonomy into Dedicated Distinct Behaviors

Architecture Principle #1 – Separation of Vehicle Autonomy from the Physical Platform

• The autonomy system runs on the vehicle payload computer and provides a series of
commands comprised of heading, speed, depth values

•  The main vehicle computer implements vehicle control (converting heading and speed
commands to rudder and thrust actuator commands) and provides the autonomy system
with navigation information, and sensor information.

Platform

Autonomy

The “3-Architecture” Autonomy Paradigm
Principle #1

Architecture Principle #2 – Separation of Autonomy System Components (MOOS)
• MOOS is middleware built on the publish-subscribe architecture.
• Each MOOS application is a separate process running on the vehicle computer.
• Each process is defined by the messages it publishes and the messages it subscribes for.

A MOOS Community

Publish

Subscribe

The “3-Architecture” Autonomy Paradigm
Principle #2

Architecture Principle #3 – Separation of Autonomy into dedicated distinct behaviors.
• The IvP Helm is a decision-making engine based on the behavior-based architecture.

It is a single MOOS application comprised of multiple specialized behaviors.
• Behaviors are turned on or off based on defined situations (states) and transitions.

When multiple behaviors are active, coordination is by multi-objective optimization.
•  Interval Programming (IvP) is the technique used for multi-objective optimization.

MOOS-IvP Payload Autonomy System

The “3-Architecture” Autonomy Paradigm
Principle #3

The Helm Iterate Loop

1

2

3

4

5

Mail is read in the MOOS OnNewMail() function and applied to a local buffer.

The helm mode is determined, and set of running behaviors determined.

Behaviors do their thing – posting MOOS variables and an IvP function.

Competing behaviors are resolved with the IvP solver.

The Helm decision and any behavior postings are published to the MOOSDB.

The Helm Iterate Loop

1

2

3

4

5

Mail is read.

Helm mode is determined.

Behaviors generate their output.

Competing behaviors are resolved.

The Helm posts its results

Waypoint

Controlled Vehicle

Obstacle
Vehicle

Waypoint

Controlled Vehicle

• Behaviors have state.
• Behaviors influence each other between iterations.
• Behaviors accept externally generated plans.
• There may be several instances of the same behavior.
• Behaviors may spawn and die dynamically based on events or commands.
• Behaviors may run in a configurable sequence.
• Behaviors rate actions over a coupled decision space (multi-objective optimization)

Non-Traditional Aspects of Behavior-Based
Control in the IvP Helm

In short, this is not Rodney Brooks’ Behavior Based Control, but the power of
independent, incremental development has been retained. Unleashed by the power
of Open Source development, and wide, diverse collaborations.

The “3-Architecture” Autonomy Paradigm

#1 – Separation of Vehicle Autonomy from the Physical Platform

#2 – Separation of the Autonomy System Components

#3 – Separation of Autonomy into Dedicated Distinct Behaviors

CHOICES (Is that good or bad?)

The “3-Architecture” Autonomy Paradigm

#1 – Separation of Vehicle Autonomy from the Physical Platform

#2 – Separation of the Autonomy System Components

#3 – Separation of Autonomy into Dedicated Distinct Behaviors

Public
Domain
Sources

End
User MOOS-IvP (public)

Other NON-PUBLIC Modules

Integration and software development proceed independently from one another.

An autonomy system has components with different capabilities, and distribution access.
 - Publicly accessible modules providing infrastructure, basic capabilities
 - FOUO Modules accessible for isolated developers of a particular project (MCM, ASW)

Public Infrastructure – Nested Capabilities

Autonomy System = Infrastructure + Modules

•  Core Infrastructure, tools and autonomy – www.moos-ivp.org.

•  Navy/Project specific add-on modules - available via restricted access servers.

MOOS – Everything you’ve come to expect and love from the Oxford distribution.

What is MOOS-IvP

•  IvP Helm – A behavior based helm and extendable set of behaviors

• MOOSDB
• pLogger
• pAntler
• pMOOSBridge
• uMS

•  iMatlab
• uPlayback
• pScheduler
•  iRemote

• StationKeep
• PeriodicSurface
• MinAltitude
• AvoidCollision

• ConstantHeading
• ConstantSpeed
• ConstantDepth
• OpRegion

• PeriodicSpeed
• CutRange
• AvoidObstacles
• MemoryTurnLimit

• Trail
• Loiter
• Timer
• Waypoint

•  IvP Tools – A set of utility applications
• pNodeReporter
• uHelmScope
• pMarineViewer
• uTimerScript

• pBasicContactMgr
• pEchoVar
• uXMS
• uProcessWatch

• uPokeDB
• uTermCommand
• Alogscan
• aloggrep

• Alogrm
• Alogclip
• Alogview
• aloghelm

 - MOOS, from the Mobile Robotics Group at Oxford
 - MOOS-IvP, from the Laboratory for Autonomous Marine Sensing Systems at MIT
 - 3rd Party (Your) modules.

Nested Repositories

Architecture Definition and Implementation

* *

*

Developed MOOS-IvP Modules (173 Modules, 11 Organizations)

•  uMS
•  pMOOSBridge
•  uPlayback

(MIT -Schmidt)
•  pSealab
•  pSubIndex
•  pTargetOpportunity
•  pTrackMonitor
•  pTrackQuality
•  pCBF
•  pBTracker

(MIT - Schmidt)
•  pNoiseSim
•  pBeamForm
•  pPlusnetMessages
(MIT/Metron)
•  pNodeStar
(Duke - Kemp)
•  pFDM PUBLIC Modules Oxford (9) (Newman)

Autonomy, AComms and Sensor Modules - MIT/NUWC (94)

PLUS INP MODULES (24)

(Idaho)
•  iSerialPort
•  pArtifactPost
•  pBlast
•  pCommMatrix
•  pCrisper
•  pEnergyMonitor
•  pFleetControl
•  pFuzzifier
•  pInference
•  uFuseGrid

(Idaho)
•  pMultiSweep
•  pSweepLines
(Panama City)
•  pATR
•  pNSWC
•  pDTSP
(NUWC/ASCM)
•  iParserAIS
•  iPlaybackAIS
•  pASCM_PK
•  iRawAIS

UCCI Modules (26)

•  pHelmIvP
•  pMarinePID
•  uHelmScope
•  iMarineSim
•  aloggrep
•  alogscan

•  pMarineViewer
•  pNodeReporter
•  uTermCommand
•  uProcessWatch
•  alogrm
•  alogclip
•  alogview

PUBLIC Modules NUWC/MIT (20) (Benjamin)

•  MOOSDB
•  pLogger
•  iRemote

•  iMatlab
•  pAntler
•  pScheduler

•  uPokeDB
•  uXMS
•  pEchoVar
•  uFunctionVis
•  uTimerScript
•  geoview
•  nsplug

(MIT/SAIC)
•  pBearings_VSA
•  pBearings_Generic
(MIT/Lincoln)
•  pDSPMessanger
•  pMultiVSASim

Unrestricted (public domain)

Unrestricted (user-to-user)

Restricted (FNC or INP funded)

(patrikilakis)
•  MOOSBlink
•  iPNICompass
•  iPWMController
•  iWinch
•  iAISNMEA
•  iCTDSBE49
•  pGPSReTx
•  MOOSDump
•  iOS5000
•  iMOOS2Serial
•  iGPS_CV
•  iGPS
•  pSamplingControl
•  zlogger
•  iModemSim
(schneider)
•  pACOMMSHandler
•  pACOMMSPoller
•  iArduinoDIO
•  pCTDCodec
•  pCTDLogger
•  pREMUSCodec
•  iSerialNMEA
•  iMOOS2SQL
•  iWHOIModem
•  uTPB

(schneider)
•  iAcousticSim
•  pGeneralCodec
•  pBTRCodec
•  pSoundSpeed
•  pTopside2NaFCon
•  pCoroner
•  pVirtualTether
•  iCommander
•  iModemComms
•  iModemWinch
•  iWebsite
•  pClusterPriority
•  pCoroner
•  pHarborTargetSim
•  pMailReader
•  pXYToLatLon
(battle)
•  iHFA
•  uMVS_Bluefin
(arjuna)
•  iCTD
•  iOEX
•  iHuxley
•  pNaFCon
•  pBeamform_SLITA
•  pRBTracker

(henrik)
•  pArraySim
•  pBearingTrack
•  pFeatureSim
•  pGPSSim
•  pGPSOffset
•  pGateway
•  pLaunch
•  pMissionMonitor
•  pMultiTargetSim
•  pMultiBearingSim
•  pTargetSimAIS
•  pTrackQuality
•  pMultiAcousticSim
(eickstedt)
•  pBearingsSim
•  pMessageSim
•  iMultiStaticSonar
•  iGSC_16AO16
(petillo)
•  iMseas
•  iMseasBathy
•  pEnvtGrad
•  pHelmToSlocum
(sideleau)
•  iGSC
•  iOceanServer

(cockrell)
•  pSimpleAcousticSim
•  pTargetSim
•  uNafconSplitter
(joint authors)
•  iDAS
•  pBearings_DURIP
•  pCSVLogger
•  pLaunch
•  pLoopback
•  pNavGlobalize
•  uBathy
•  uCtdSim2
•  uMsgSim
•  pRemus
•  pActivePassiveMgr
(jshusta)
•  pLinkSource
•  pLinkSink
•  pLinkLog
•  pLinkPollSrv
(raylum)
•  pBFMF
(leederkerken)
pDR
iXBow440
iSICK

(MIT)
•  pDR
•  pCNEKF
•  pSimDVL
(APL-UW)
•  iCommStack
(JHU)
•  pAutonomyBridge
•  pSafety
•  iSportScan

(MIT -Eickstedt)
•  p1HTracker
•  pMBTracker
•  pSearch
•  pMessageSim
(SAIC)
•  iVSA
•  pAEL

(As of September 2009)

•  The IvP Helm and Architecture Motivations

•  New capabilities in Release 4.1

•  Plans for Development

Outline

Highlights:

•  Dynamic Behavior Spawning

•  Scripting – the uTimerScript application

•  Contact Management – the pBasicContactMgr application

New Capabilities in
Release 4.1

Dynamic Behavior Spawning

What is Dynamic Behavior Spawning?

•  Behaviors may be defined as templates - instances spawned upon external events.

•  Behavior may be built to die under certain conditions, and post MOOS messages
immediately prior to dying.

Motivation:

•  For certain behaviors, e.g., collision avoidance, contact tracking, multiple instances of
the behavior are required, one for each contact.

•  It’s virtually impossible to know the amount or type of contacts encountered prior to
the start of the mission.

Configuring Behaviors with
Dynamic Behavior Spawning

Old Way:

Behavior = BHV_AvoidCollision!
{!
 name = avd_collision!
 pwt = 200!
 condition = AVOID=true!
 updates = CONTACT_INFO!

 contact = macrura!
 active_outer_distance = 50!
 active_inner_distance = 20!
 completed_distance = 75!
 collision_distance = 8!
 all_clear_distance = 25!
 active_grade = linear!
 on_no_contact_ok = true!
 extrapolate = true!
 decay = 30,60!
}!

Behavior = BHV_AvoidCollision!
{!
 name = avd_collision!
 pwt = 200!
 condition = AVOID=true!
 updates = CONTACT_INFO!
 endflag = CONTACT_RESOLVED = $[CONTACT]!
 templating = spawn!

 contact = to-be-set!
 active_outer_distance = 50!
 active_inner_distance = 20!
 completed_distance = 75!
 collision_distance = 8!
 all_clear_distance = 25!
 active_grade = linear!
 on_no_contact_ok = true!
 extrapolate = true!
 decay = 30,60!
}!

New Way:

CONTACT_INFO = “name=avd_macrura # contact=macrura”!

CONTACT_INFO = “name=avd_henry # contact=henry”!

MOOS Post

MOOS Post

The Berta Example Mission with
Dynamic Behavior Spawning

The Berta example mission:
•  In moos-ivp/trunk/missions/m2_berta
•  Two vehicles loitering and repeatedly swapping loiter locations
•  Each time the vehicles get close, a collision avoidance behavior is spawned.
•  After the range opens sufficiently, the collision avoidance behavior dies.

Monitoring Life Events

$ uHelmScope --life henry.moos !

•  A “Life Event” is the spawning or death of a behavior.
•  Life Events may be monitored in a special mode of the uHelmScope MOOS utility:

Monitoring Life Events

•  A “Life Event” is the spawning or death of a behavior.
•  Life Events may be monitored in a special mode of the uHelmScope MOOS utility.
•  The Life Event may also be examined post-runtime from the MOOS log files:

$ aloghelm --life henry_logfile.alog !

The uTimerScript Utility:
Overview

What is uTimerScript?
• A tool that allows the user to script a set of pre-configured events (pokes) to a MOOSDB.
• Each event can be configured to happen after a specified amount of elapsed time.
• Enables us to fake incoming command-and-control messages, sensor events etc.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10!

 EVENT = var=DEPLOY, val=true, time=15!
}!

A simple example:

This simple script
will launch the Alpha
or Berta missions
automatically.

EVENT = var<variable>, val=<value>, time=<delay>

The uTimerScript Utility:
Starting and Pausing the Script

When does the script start?
• By default the script starts when uTimerScript connects to the MOOSDB and begins to Iterate().
•  It may be configured in the “paused” mode
•  It may be configured to include a delay once it has started.
•  It may be configured to require conditions be met before starting.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10!

 EVENT = var=DEPLOY, val=true, time=15!

 CONDITION = ALPHA != 20!

 DELAY_START = 30!

 PAUSED = true!
}!

Starting the script in the PAUSED mode, with a DELAY.

The script may then be un-paused by posting to the MOOSDB:
UTS_PAUSE=false.!

Script will be paused if ALPHA=20.
(uTimerScript will register for ALPHA).!

The uTimerScript Utility:
Randomizing the Event Times

Random event scheduling:
• Events may be configured to occur at a random time in a given interval.
• Random events are useful in testing the robustness of algorithms in varying situations.

ProcessConfig = uTimerScript!
{!
 AppTick = 4!
 CommsTick = 4!

 EVENT = var=MOOS_MANUAL_OVERRIDE, val=false, time=10:20!

 EVENT = var=DEPLOY, val=true, time=10:20!

 PAUSED = true!
}!

The same example script with events randomized:

Event occurs between
10 and 20 seconds after
the script begins!

Event times are chosen with uniform probability.

The uTimerScript Utility:
Usage in the Berta Example Mission

On each iteration of the script, the location of the loiter
polygons are randomly set within the two regions.

Region #1

Region #2

The pBasicContactMgr Utility:
What it is, and is not

What is pBasicContactMgr?
• A tool for managing node reports and generating

conditional events.
•  It posts summary reports for all known contacts.
•  It posts events, i.e., alerts, about contacts based

on the range to the contact.
• Designed with the IvP Helm in mind to allow the

helm to spawn contact-related behaviors
dynamically as they become known.

What pBasicContactMgr is NOT:

•  It is not a sensor application.

•  It does not perform sensor fusion.

•  It does not represent or reason about areas of
uncertainty associated with contact position.

• CONTACTS_LIST!
• CONTACTS_RECAP!
• CONTACT_ALERTED!
• CONTACTS_UNALERTED!
• CONTACTS_RETIRED!
• CONTACT_MGR_WARNING!

Variables Published:

The pBasicContactMgr Utility:
Contacts, Alerts, Record keeping

CONTACTS_LIST:!
CONTACTS_RECAP:!

CONTACT_ALERTED:!
CONTACTS_UNALERTED:!

CONTACTS_RETIRED:
CONTACT_MGR_WARNING:!

• CONTACTS_LIST: != "delta,gus,charlie,henry" !!
• CONTACT_ALERTED: != "delta,charlie" !
• CONTACTS_UNALERTED: != "gus,henry" !
• CONTACTS_RETIRED: != "bravo,foxtrot,kilroy" !
• CONTACTS_RECAP: != "name=delta,age=11.3,range=193.1 # name=gus,age=0.7,range=48.2

 #name=charlie,age=1.9,range=73.1 # name=henry,age=4.0,range=18.2"!

comma-separated list of contacts. !!
A comma-separated list of contact summaries.!!
A list of contacts for which alerts have been posted.!
A list of contacts for which alerts are pending, based on the range criteria.!
A list of contacts removed due to the information staleness. !
A warning message indicating possible mishandling of or missing data.!

The following are reported (Posted to the MOOSDB) on each iteration:

Examples:

The pBasicContactMgr Utility:
Alert Triggers

Alerts are triggered by range. Configured in the MOOS configuration file:

 ALERT_RANGE = <distance> // meters!
ALERT_CPA_RANGE = <distance> // meters!
 ALERT_CPA_TIME = <duration> // seconds!

 ALERT_RANGE – when a contact is within this range an alert is generated.
ALERT_CPA_RANGE – when a contact is within this range and its closest point of approach (CPA)

is within the alert range, an alert is generated. !
 ALERT_RANGE – The time used for CPA calculation.

Examples:
YES

YES

NO

NO

•  The IvP Helm and Architecture Motivations

•  New capabilities in Release 4.1

•  Plans for Development

Outline

FY11 Planned activities:

•  Opportunistic Function Generation
 Modification of the Helm and IvPBehavior super class to allow behaviors to re-
submit IvP functions from prior iterations if deemed sufficiently similar between
iterations.

•  Helm-Accessible Approximate Vehicle Dynamics
 Identify concise representations and approximations of vehicle dynamics for
behaviors to better evaluate candidate helm decisions.

•  Integrated Scheduling with Behavior-Based Control
 Investigation of hybrid approaches of combining scheduling and planning
techniques with traditional behavior-based reactive decision-making.

•  Mixed Human-Machine Competition Scenarios
 Exploration of competition scenarios for development of behaviors and
interfaces to human operators based on win/lose evaluation metrics.

Plans for Development

