Lab 6 - Pre-Lab for Multi-Vehicle Operations

2.680 Unmanned Marine Vehicle Autonomy, Sensing and Communications

Mar 5th, 2024

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

Overview and Objectives 3
Preliminaries 3
The Shoreside (Topside) / Vehicle Topology 5
Experimenting with pShare 8
4.1 Assignment 1 (self check-off) - Configure pXRelay with pShare 8
4.2 Assignment 2 (self check off) - The Alpha pShare Mission 10
Instructions for Handing In Assignments 12
5.1 Requested File Structure L 12

1 Overview and Objectives

In Lab 6 we begin shifting our focus to autonomy configurations involving multiple vehicles. This
pre-lab covers a few initial steps of Lab 6 for those who wish to get a jump on Lab 6. Our first focus
will be on communications between two independently running MOOSDB processes, where typically a
single M00SDB, or "MOOS Community” is associate with a single vehicle. Ultimately the inter-M00SDB
or inter-vehicle communication may come over an acoustic modem link or a satellite link, our
primary initial focus is on communications over an Internet connection, even if the multiple "nodes”
are all running on your one laptop.

Gaining familiarity with this mode of operation will be essential for later labs and operation of
vehicles on the water.

e The Shoreside and Vehicle(s) Topology
e Introduction to pShare via the xrelay mission
e Converting the Alpha Mission to use a Shoreside / Vehicle Topology

2 Preliminaries

Make Sure You Have the Latest Updates

It is possible we will be making changes to the MOOS-IvP tree during the semester. Always make
sure you have the latest code:

$ cd moos-ivp
$ svn update

If you see see a response similar to the below, indicating that no updates were pulled in from the
server, then you shouldn’t need to re-build the software. (The revision number presented to you
may be higher than what is shown however.)

Updating ’.’:
At revision 10516.

Otherwise you will need to rebuild:

$./build-moos.sh
$./build-ivp.sh

Make Sure Key Executables are Built and In Your Path

This lab does assume that you have a working MOOS-IvP tree checked out and installed on your
computer. To verify this make sure that the following executables are built and findable in your
shell path:

$ which MOOSDB
/Users/you/moos-ivp/bin/MO0SDB

$ which pHelmIvP
/Users/you/moos-ivp/bin/pHelmIvP

If unsuccessful with the above, return to the steps in Lab 1:
http://oceanai.mit.edu/ivpman/labs/machine_setup

Where to Build and Store Lab Missions

As with previous labs, we will use your version of the moos-ivp-extend tree. In this tree, there is a
missions folder:

$ cd moos-ivp-extend

$ 1s

CMakeLists.txt bin/ build.shx* docs/ missions/ src/
README build/ data/ 1ib/ scripts/

For each distinct assignment in this lab, there should be a corresponding subdirectory in a lab_06
sub-directory of the missions folder, typically with both a .moos and .bhv configuration file. See
Section 5.1 for the full requested file structure.

Documentation Conventions

To help distinguish between MOOS variables, MOOS configuration parameters, and behavior
configuration parameters, we will use the following conventions:

e MOOS variables are rendered in green, such as IVPHELM STATE, as well as postings to the
MOOSDB, such as DEPLOY=true.

e MOOS configuration parameters are rendered in blue, such as AppTick=10 and verbose=true.

Behavior parameters are rendered in brown, such as priority=100 and endflag=RETURN=true.

MOOS-IvP applications are rendered in magenta, such as MOOSDB, or pHelmIvP.

General GNU/Linux commands are represented in dark purple, such as wget, 1s, or cd.

More MOOS / MOOS-IvP Resources

A few further resources are worth mentioning for following up this lab with your own exploration.

e The pShare documentation
http://oceanai.mit.edu/2.680/0xmoos/pshare.html

e The slides from today’s class which give a bit more background into marine autonomy and
the IvP Helm.
http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2024.pdf

e The IvP Helm and Utilities documentation: http://oceanai.mit.edu/ivpman

e The moos-ivp.org website: http://www.moos-ivp.org

http://oceanai.mit.edu/ivpman/labs/machine_setup
http://oceanai.mit.edu/2.680/oxmoos/pshare.html
http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2024.pdf
http://oceanai.mit.edu/ivpman
http://www.moos-ivp.org

3 The Shoreside (Topside) / Vehicle Topology

The layout of interconnected MOOS communities used in this lab is depicted in the figure below.
This layout will be used for the remainder of the course, including during operations on the river.
You will experience different versions of this arrangement. In the simplest arrangement, in the lab,
the Shoreside and vehicle communities will all be running on your computer. As we mentioned
previously, A MOOS community is a collection of MOOS apps, each connected to a single MOOSDB
for that community. The Shoreside topology is sometimes also referred to as the uField topology
since the uField Toolbox is a set of utility applications for facilitating the Shoreside arrangement.

“Shoreside” could be:

Topside on a ship

At a shoreside lab

MIT Pavilion
Instructor’s Shoreside
computer | (Command and Control)
Shoreside
Vehicles
Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle

Figure 1: Shoreside to Multi-Vehicle Topology: A number of vehicles are deployed with each vehicle maintaining
some level of connectivity to a shoreside command and control computer. Each node (vehicles and the shoreside) are
comprised of a dedicated MOOS community. Modes and limits of communication may vary.

Communications between apps within a single MOOS community are typically high bandwidth
with little or negligible latency. This is all handled over TCP communications between the app
and the MOOSDB through the publish-subscribe protocol described thus far in class. Communica-
tions between MOOS communities will typically be much lower in bandwidth with higher latency.
Communication modalities may also vary, but include WiFi, underwater acoustic modems, satellite
networks like Iridium, and others. In these cases there can also be messages that are simply lost.

Because of these limitations, communications are also typically more deliberately arranged ahead
of time. Communications within a MOOS community can be quite dynamic in the sense that
any app can publish anything at any time, and any app can Register for information at any time.
In autonomy systems where there are communications between MOOS communities, the allowed
inter-node messages are usually declared beforehand, and there may also be message priorities and
upper limits on message frequency for certain variables.

In our class, both in simulation and on the water, the app pShare is used for inter-node communica-
tions (comms between MOOS communities). Each MOOS community runs an instance of pShare as
shown in Figure 2 below.

Shoreside Community

pMarineViewer |4 —

I MOOSDB 4—+ Other Apps ... ‘

User / Command and Control
pShare

-2

\

Vehicle Community B (Vehicle Community

[MOOSDB H Other Apps ... ‘ I Other Apps ... H MOOSDB l
pHelmIvP pHelmlvP

Figure 2: Inter MOOS Community Communications: Apps within a single MOOS community communicate
over TCP, while communication between communities is assumed to be lossy. The pShare app is use in simulations
in some field test environments to share a small configurable set of information between platforms.

Each instance of pShare is configured to listen on a unique channel. The channel is defined by its
IP address and port number. Therefore, when multiple MOOS communities are simulated on a
single machine (same IP address), the port numbers need to be different. When the multiple MOOS
communities are on different platforms, each with its own unique IP address, then each pShare app
may have the same port number.

In addition to specifying the channel for incoming messages, pShare needs to be configured to specify
outgoing messages. An outgoing message configuration consists of specifying a MOOS variable in the
local (source) community, and the destination of the message in terms of the IP address and port
number of the receiving pShare app in the destination community. It is also possible to change the
name of MOOS variable as it arrives in the destination community. So each pShare configuration
will consist of two parts:

e The incoming listen port
e One or more MOOS variables mapped to a destination community.

When finally configured, a publication to a local MOOS variable involved in a pShare, will result
in a near instantaneous similar publication in the destination community. Note that pShare works
over UDP, and messages do not have the same guarantee of arrival as they do with TCP. Messages
can and will drop. You are unlikely to experience a dropped message when simulating inter-node
comms on a single computer, or even over reasonably strong WiFi connection. But there will be
dropped messages when working on the Charles River when the robots have lossy comms to the
shore. There are no mechanisms built into pShare to detect a dropped message. If a message is
critical, the user will have to implement their own acknowledgment and re-send protocol.

Note: In an separate development branch, a new 2023 app called pMediator has been developed

to such an ack and re-send protocol. Ask if you’re interested, but we won’t need it in our labs in
simulation.

Normally in our setups, the pShare communications are solely between the shoreside MOOS
community and the one or more vehicle MOOS communities. We typically don’t share information
directly between vehicles, although there is nothing about pShare that would disallow this. While
inter-vehicle communication is certainly desired, and part of our future labs, we implement all
inter-vehicle communications to be routed through the Shoreside community. For reasons further
explained in later labs, we use this ”comms routed through the shoreside” arrangement so that
we can simulate comms limitations often experienced in the field. We can drop comms based on
inter-vehicle range, or we can limit the bandwidth between vehicles to simulate communications
with similar limits, like satellite or underwater acoustic comms.

4 Experimenting with pShare

In the first exercise in the pre-lab, the goal is to become familiar with pShare. In these first couple
of missions, we will be configuring pShare explicitly in our .moos files. In later missions, we will be
using components of the uField Toolbox to automatically configure the share configurations.

4.1 Assignment 1 (self check-off) - Configure pXRelay with pShare

In this part we will:

e Prepare a copy of the xrelay mission for experimenting.

e Create two .moos files to launch two MOOSDB processes.

e Launch the two communities and confirm that sharing between two MOOS communities works
with pShare.

4.1.1 Make a Copy of the pXRelay Mission

The first step is to copy the xrelay example mission from your moos-ivp tree in your own

moos-ivp-extend tree.

$ cp -rp moos-ivp/ivp/missions/xrelay moos-ivp-extend/missions/lab_06/xrelay_pshare

The original xrelay mission had a single .moos mission configuration file, with a single M00SDB and
two pXRelay apps.

pXRelay Apples pXRelay Pears

MOOSDB

Figure 3: The original xrelay mission contained a single MOOSDB with two pXRelay applications uniquely named.

This will be transformed by you into two mission files, each launching a single M00SDB, each with a
unique community name:

Apples Pears
MGCOS Community i MOOS Community

pShare pShare

r E Y
pXRe|ay MOOSDB ’ MOOSDB pXRe|ay

Figure 4: The new xrelay mission contains two MOOSDBs each with their own pXRelay application. The pXRelay
application does not need to be uniquely named, but the MOOS communities are uniquely named.

Recall in the earlier XRelay mission, where two versions of pXRelay were launched and connected to
the same 1M00SDB, each version had to be launched with a unique name, like pXRelay apples. Since
we now will be launching two MOOS Communities, with one instance of pXRelay in each community,
each pXRelay instance can simply remain named pXRelay.

4.1.2 Split the xrelay Mission up into Two Separate MOOS Communities

The xrelay mission, as originally configured, has three essential apps launched. The M00SDB, and
two pXRelay apps. In this experiment, you will create two .moos files, each launching a M00SDB and
one pXRelay app. You will also need the pShare app launched in each community.

Note: You will need to configure each .moos file with a unique community name (with the Community
parameter), and port number (with the ServerPort parameter). The ServerHost parameter can
remain "localhost" for now. Note each of those pieces of information since you will need it in the
configuration of pShare in both files.

Some quick documentation on pShare can be found by just typing "pShare --help" on the command
line. Or you can find more complete documentation here:

http://oceanai.mit.edu/2.680/0xmoos/pshare.html

Your pshare configuration block will look something like (removing the comments of course):

ServerHost = localhost
ServerPort = 9000 <-- needs to be unique between files
Community = apples <-- needs to be unique between files

ProcessConfig = pShare

{
AppTick =4
CommsTick = 4
input = route = localhost:9200 <-- needs to be unique between files
output = src_name=APPLES, route=localhost:9201
}

http://oceanai.mit.edu/2.680/oxmoos/pshare.html

Note that the port on which pShare is listening is not the same port on which the MOOSDB is
serving. And remember that the same share configuration will not work for both sides. They must
complement each other, in terms of the variable name being shared, the share input route, the
destination host IP and port number. The following figure may help:

Apples Pears
MOOS Community : MOOS Community
input = route = localhost:9200 E input = route = localhost:3201
output = sre=APPLES, route=localhost:9201 pShare | pShare output = src=FEARS, route=localhost:9200
Y V
v E v
pXRelay [« MOOSDB ’ MOOSDB » pXRelay

Figure 5: The new xrelay mission needs to have pShare configured to share the APPLES and PEARS messages with
complementary configurations.

4.1.3 Launch the two communities and confirm that sharing works

Using perhaps two separate terminal windows, launch both MOOS communities and confirm that
the modified xrelay mission works as before. You will still need to poke one of the communities
to get things going. Confirm things are working by opening a scope in one of the communities.
Enable the ” Community” field on scoped items, either by launching uxMs with the --show=community
parameter, or just toggling this field on with the ’c’ key after uxus is launched. You should see
postings from both the local community, and the second remote community.

If things are not working, consider the following trouble-shooting points:

e Make sure the port specified in the share input route on each side matches the destination
port on the other, and vice versa.

e Make sure the port numbers used are not the same as the MOOSDB port numbers.

e Make sure the MOOSDB port numbers are unique, like 9000 and 9001. This is the ServerPort
parameter in the .moos file.

e Try just poking with uPokeDB to test the sharing. For example, poking APPLES=99 in the
community that is configured to export the the APPLES variable, and opening a scope in the
destination community.

4.2 Assignment 2 (self check off) - The Alpha pShare Mission

In this part we will:

e Prepare a copy of the alpha mission for experimenting.

Create two .moos files to launch two MOOSDB processes.

Implement the Alpha mission with two MOOS communities using pShare.

Launch the two communities and confirm that sharing works.

10

4.2.1 Make a Copy of the Alpha Mission

The first step is to copy the alpha example mission from the moos-ivp class tree into your own
moos-ivp-extend tree.

$ cp -rp moos-ivp/ivp/missions/sl_alpha moos-ivp-janedoe/missions/lab_06/alpha_pshare

You won’t be handing this in, but it’s not a bad idea to check it in under your version control
system.

4.2.2 Split the Alpha Mission Into Two Separate MOOS Communities

In this step you will create two separate MOOS communities: a shoreside community and an
alpha vehicle community, by creating two separate .moos files. In the shoreside community there
will be a MO0OSDB and pMarineViewer. In the alpha community will be a M0O0OSDB and everything but
pMarineViewer. In both communities you will also need to add a pShare configuration block and
add pShare to the Antler configuration block.

The primary challenge here is to consider which variables to configure for sharing in each direction.
One hint is that, from the vehicle to the shoreside you will need to share the NODE REPORT. This
is the message generated from plNodeReporter containing much of the vehicle state, and used by
pMarineViewer to render the vehicle. It is generated locally on the vehicle as NODE REPORT LOCAL and
should arrive in the shoreside as NODE REPORT. The configuration in alpha’s pshare config block will
look something like:

output = src_name=NODE_REPORT_LOCAL, dest_name=NODE_REPORT, route=localhost:9200

You will also want to share the VIEW POLYGON and VIEW POINT variables to enable pMarineViewer on
the shoreside to have the visual feedback of the vehicle waypoints. What variables do you need to
share from the shoreside to the vehicle?

4.2.3 Launch the Two Communities and Confirm that Sharing Works

Using perhaps two separate terminal windows, launch both MOOS communities and confirm that
the modified Alpha mission works as before. You still should be able to deploy and return the vehicle
with the buttons in pMarineViewer. Consider what is being poked when hitting those buttons. You
can always find this out by looking at the pMarineViewer configuration block in the mission file. Or,
recent versions of pMarineViewer, you can hover your mouse over each button, and after a second a
small pop-up window will appear showing which variables are being poked with that button. Make
sure those variables are being properly shared to the alpha vehicle community.

If things are not working, consider the following trouble-shooting points:

e Make sure the port specified in the share input route on each side matches the destination
port on the other, and vice versa.

e Make sure the port numbers used are not the same as the MOOSDB port numbers.

e Try just poking with uPokeDB to test the sharing. For example, poking DEPLOY=true in the
shoreside community, and opening a uXs scope in the destination (alpha) community. Even

11

easier: use the realmcasting interface built into pMarineViewer as of 2022, to verify that
messages like DEPLOY are being shared from shore to the vehicle. Ask a TA for help if haven’t
used the realmcasting utility yet.

e You should see a vehicle in the pMarineViewver window even before deploying the vehicle. If
you don’t check the pShare configuration on the vehicle side.

The result should look just like the basic alpha mission from Lab 1, but, under the hood, things are
just running in two separate MOOS communities:

Figure 6: The Alpha mission.
video:(0:19): https://vimeo.com/84549446

5 Instructions for Handing In Assignments

5.1 Requested File Structure

You are encouraged to continue to upload all mission files. Here is the requested file structure:

12

https://vimeo.com/84549446

moos-ivp-extend/
missions/
lab_06/

xrelay_pshare/
alpha_pshare/
alpha_bravo_pshare/
henry_gilda_baseline/
henry_gilda_refuel/
henry_gilda_auto_refuel/

//
//
//
//

//

Assignment
Assignment
Assignment
Assignment
Assignment
Assignment

DO W N

self check off
self check off
check off
self check off
self check off
check off

13

	Overview and Objectives
	Preliminaries
	The Shoreside (Topside) / Vehicle Topology
	Experimenting with pShare
	Assignment 1 (self check-off) - Configure pXRelay with pShare
	Assignment 2 (self check off) - The Alpha pShare Mission

	Instructions for Handing In Assignments
	Requested File Structure

