
Lab 6 - Multi-Vehicle Operations
2.680 Unmanned Marine Vehicle Autonomy, Sensing and Communications

March 5th, 2024

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139

1 Overview and Objectives 3

2 Preliminaries 3

3 The Shoreside (Topside) / Vehicle Topology 6

4 A Very Brief Discussion on Launch Scripts 9
4.1 Why Launch Scripts are Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Launch Scripts are Bash Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Launching MOOS Communities from the Launch Script . . . . . . . . . . . . . . . . . . . . . 10
4.4 Bash Script Command Line Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Further Experimenting with pShare 12
5.1 Assignment 3 (check off) - The Alpha Bravo pShare Mission . . . . . . . . . . . . . . . . . . . 12

6 Using the uField Toolbox to Facilitate Multi-Vehicle Simulations 14
6.1 Assignment 4 (self check off) - The Henry Gilda Baseline Mission . . . . . . . . . . . . . . . . 14
6.2 Assignment 5 (self check off) - The Henry Gilda Refuel Mission . . . . . . . . . . . . . . . . . 16
6.3 Assignment 6 (check off) - The Henry Gilda Auto Refuel Mission . . . . . . . . . . . . . . . . 17

7 Instructions for Handing In Assignments 18
7.1 Requested File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Due Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



2



1 Overview and Objectives

This lab assumes the completion of the Lab 6 Pre-Lab Assignment ending with the self checkoff
"Alpha pShare" mission.

In this lab we will continue shifting our focus to autonomy configurations involving multiple vehicles.
The first focus, in the pre-lab, was on communications between two independently running MOOSDB

processes, where typically a single MOOSDB, or ”MOOS Community” is associate with a single vehicle.
Ultimately the inter-MOOSDB or inter-vehicle communication may come over an acoustic modem link
or a satellite link, our primary initial focus is on communications over an Internet connection, even
if the multiple ”nodes” are all running on your one laptop.

Gaining familiarity with this mode of operation will be essential for later labs and operation of
vehicles on the water.

� The Shoreside and Vehicle(s) Topology

� Introduction to pShare via the xrelay mission

� Converting the Alpha Mission to use a Shoreside / Vehicle Topology

� Converting the Alpha Mission to a Two-Vehicle Mission with pShare

� Using the uField Toolbox to Ease pShare Configuration

2 Preliminaries

The MOOS-IvP-2680 Tree

Starting with this lab, we begin using the additional moos-ivp-2680 tree. In total you will now work
with three trees:

� moos-ivp: Public autonomy codebase (provided to you)

� moos-ivp-2680: 2.680 autonomy codebase and baseline missions (provided to you)

� moos-ivp-extend: Student codebase and lab solution missions (created by you)

Download this tree onto your computer in the same folder, side-by-side with moos-ivp and
moos-ivp-extend. To download:

$ svn co https://oceanai.mit.edu/svn/moos-ivp-2680-aro/trunk moos-ivp-2680

The moos-ivp-2680 tree contains both MOOS apps and MOOS missions useful to 2.680. In today’s
lab, content from the moos-ivp-2680/missions folder will be needed. We don’t yet need any apps,
but if you want to add moos-ivp-2680/bin to your shell path in your .bashrc file, this is a good
move you will need for later.

Make Sure You Have the Latest MOOS-IvP Updates

It is possible we will be making changes to the MOOS-IvP tree during the semester. Always make
sure you have the latest code:

3



$ cd moos-ivp

$ svn update

If you see see a response similar to the below, indicating that no updates were pulled in from the
server, then you shouldn’t need to re-build the software.

Updating ’.’: At revision 10516.

Otherwise you will need to rebuild:

$ ./build-moos.sh

$ ./build-ivp.sh

Make Sure Key Executables are Built and In Your Path

This lab does assume that you have a working MOOS-IvP tree checked out and installed on your
computer. To verify this make sure that the following executables are built and findable in your
shell path:

$ which MOOSDB

/Users/you/moos-ivp/bin/MOOSDB

$ which pHelmIvP

/Users/you/moos-ivp/bin/pHelmIvP

If unsuccessful with the above, return to the steps in Lab 1:
http://oceanai.mit.edu/ivpman/labs/machine_setup

Where to Build and Store Lab Missions

As with previous labs, we will use your version of the moos-ivp-extend tree. In this tree, there is a
missions folder:

$ cd moos-ivp-extend

$ ls

CMakeLists.txt bin/ build.sh* docs/ missions/ src/

README build/ data/ lib/ scripts/

For each distinct assignment in this lab, there should be a corresponding subdirectory in a lab 06

sub-directory of the missions folder, typically with both a .moos and .bhv configuration file. See
Section 7.1 for the full requested file structure.

Documentation Conventions

To help distinguish between MOOS variables, MOOS configuration parameters, and behavior
configuration parameters, we will use the following conventions:

� MOOS variables are rendered in green, such as IVPHELM STATE, as well as postings to the
MOOSDB, such as DEPLOY=true.

� MOOS configuration parameters are rendered in blue, such as AppTick=10 and verbose=true.

� Behavior parameters are rendered in brown, such as priority=100 and endflag=RETURN=true.

4

http://oceanai.mit.edu/ivpman/labs/machine_setup


� MOOS-IvP applications are rendered in magenta, such as pShare, or pHelmIvP.

� General GNU/Linux commands are represented in dark purple, such as wget, mkdir, or cd.

More MOOS / MOOS-IvP Resources

A few further resources are worth mentioning for following up this lab with your own exploration.

� See the slides from class related to multiple vehicles and inter-vehicle sharing of information:
http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2024.pdf

� See the slides from class which give a bit more background into marine autonomy and the IvP
Helm: http://oceanai.mit.edu/2.680/docs/2.680-08-ivphelm_behaviors_2024.pdf

� The IvP Helm and Utilities documentation: http://oceanai.mit.edu/ivpman

� The moos-ivp.org website: http://www.moos-ivp.org

5

http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2024.pdf
http://oceanai.mit.edu/2.680/docs/2.680-08-ivphelm_behaviors_2024.pdf
http://oceanai.mit.edu/ivpman
http://www.moos-ivp.org


3 The Shoreside (Topside) / Vehicle Topology

The layout of interconnected MOOS communities used in this lab is depicted in the figure below.
This layout will be used for the remainder of the course, including during operations on the river.
You will experience different versions of this arrangement. In the simplest arrangement, in the lab,
the Shoreside and vehicle communities will all be running on your computer. As we mentioned
previously, A MOOS community is a collection of MOOS apps, each connected to a single MOOSDB
for that community. The Shoreside topology is sometimes also referred to as the uField topology
since the uField Toolbox is a set of utility applications for facilitating the Shoreside arrangement.

Figure 1: Shoreside to Multi-Vehicle Topology: A number of vehicles are deployed with each vehicle maintaining
some level of connectivity to a shoreside command and control computer. Each node (vehicles and the shoreside) are
comprised of a dedicated MOOS community. Modes and limits of communication may vary.

Communications between apps within a single MOOS community are typically high bandwidth with
little or no latency. This is all handled over TCP communications between the app and the MOOSDB
through the publish-subscribe protocol described thus far in class. Communications between MOOS
communities will typically be much lower in bandwidth with higher latency. Communication
modalities may also vary, but include WiFi, underwater acoustic modems, satellite networks like
Iridium, and others. In these cases there can also be messages that are simply lost.

Because of these limitations, communications are also typically more deliberately arranged ahead
of time. Communications within a MOOS community can be quite dynamic in the sense that
any app can publish anything at any time, and any app can Register for information at any time.
In autonomy systems where there are communications between MOOS communities, the allowed
inter-node messages are usually declared beforehand, and there may also be message priorities and
upper limits on message frequency for certain variables.

In our class, both in simulation and on the water, the app pShare is used for inter-node communica-
tions (comms between MOOS communities). Each MOOS community runs an instance of pShare as
shown in Figure 2 below.

6



Figure 2: Inter MOOS Community Communications: Apps within a single MOOS community communicate
over TCP, while communication between communities is assumed to be lossy. The pShare app is use in simulations
in some field test environments to share a small configurable set of information between platforms.

Each instance of pShare is configured to listen on a unique channel. The channel is defined by its
IP address and port number. Therefore, when multiple MOOS communities are simulated on a
single machine (same IP address), the port numbers need to be different. When the multiple MOOS
communities are on different platforms, each with its own unique IP address, then each pShare app
may have the same port number.

In addition to specifying the channel for incoming messages, pShare needs to be configured to specify
outgoing messages. An outgoing message configuration consisting of specifying a MOOS variable
in the local (source) community, and the destination of the message in terms of the IP address
and port number of the receiving pShare app in the destination community. It is also possible to
change the name of MOOS variable as it arrives in the destination community. So each pShare

configuration will consist of two parts:

� the incoming listen port

� one or more MOOS variables mapped to a destination community.

When finally configured, a publication to a local MOOS variable involved in a pShare, will result
in a near instantaneous similar publication in the destination community. Note that pShare works
over UDP, and messages do not have the same guarantee of arrival as they do with TCP.

https://www.spiceworks.com/tech/networking/articles/tcp-vs-udp

Messages can and will drop when using pShare. You are unlikely to experience a dropped message
when simulating inter-node comms on a single computer, or even over reasonably strong WiFi
connection. But there will be dropped messages when working on the Charles River when the robots
have lossy comms to the shore. There are no mechanisms built into pShare to detect a dropped

7

https://www.spiceworks.com/tech/networking/articles/tcp-vs-udp


message. If a message is critical, the user will have to implement their own acknowledgment and
re-send protocol. Note: our lab has developed an additional app, pMediator for this purpose, but it
is in beta mode and not yet part of the main MOOS-IvP release.

Normally in our setups, the pShare communications are solely between the shoreside MOOS
community and the one or more vehicle MOOS communities. We typically don’t share information
directly between vehicles, although there is nothing about pShare that would disallow this. While
inter-vehicle communication is certainly desired, and part of our future labs, we implement all
inter-vehicle communications to be routed through the Shoreside community. For reasons further
explained in later labs, we use this comms-routed through-the-shoreside arrangement so that we can
simulate comms limitations often experienced in the field. We can drop comms based on inter-vehicle
range, or we can limit the bandwidth between vehicles to simulate communications with similar
limits, like satellite or underwater acoustic comms.

8



4 A Very Brief Discussion on Launch Scripts

With multi-vehicle missions hereafter common in this course, we will make regular use of launch
scripts using Bash. You will want to use these scripts. When baseline missions are provided as part
of the lab, a launch script will be provided. For multi-vehicle mission meant to run both on the
water and in simulation, multiple nexted scripts will be provided. This may seem initially like an
unwelcome additional layer of complexity, but their utility and will quickly become apparent. And
they do make things simpler. Some knowledge of how they work and how to make modifications
will be helpful.

4.1 Why Launch Scripts are Used

A quick review on launching a MOOS community. We could launch all applications on the command
line, one per terminal window, using something like

$ MOOSDB mission.moos

$ pHelmIvP mission.moos

$ uSimMarine mission.moos

...

$ pLogger mission.moos

But this would be insane and wouldn’t scale, so that’s why we have been using pAntler instead,
with the Antler config block at the top of the mission.moos file. So all of the above is replaced with

$ pAntler mission.moos

A similar unscalable situation arises when we are simulating multiple vehicles alongside a shoreside
MOOS community (our Shoreside, a.k.a., uField Topology). Launching N vehicles would require:

$ pAntler shoreside.moos

$ pAntler vehicle1.moos

$ pAntler vehicle2.moos

...

$ pAntler vehicleN.moos

Although our multi-vehicle missions typically involve only two vehicles, and we could almost get
by with launching like the above, we do routinely launch as many as 10-50 simulated vehicles
in other projects. Our use of launch scripts makes this easier, and we will use them even in a
two-vehicle-plus-shoreside missions. Although the contents of the script may vary, most multi-vehicle
mission folders simply can be launched with:

$ ./launch.sh [WARP] [OPTIONS]

The arguments surrounded by brackets is common notation for being an optional argument. The
[WARP] argument is the time warp, which defaults to 1. The other set of [OPTIONS] may vary between
launch scripts in different missions, but may include mission parameters such as the number of
vehicles to launch, their speed or initial placement and so on. Most launch scripts support the

9



--help or -h arguments to see the full list of availble command line arguments.

4.2 Launch Scripts are Bash Scripts

Our launch scripts are Bash scripts, which is in itself its own sort of programming language. Bash
scripts have the distinct quality that each line in the script could be something you just typed on
the command line. After all, your command line is a Bash session. It is possible that your command
line session is using some other shell, like zsh or tcsh. But if you are, it will be very similar. And
even if you are using something different than Bash on your command line, our Bash scripts always
have the first line:

#!/bin/bash

This indicates that the prevailing shell program, e.g., Bash, will be exactly Bash, in the form of the
executable /bin/bash, rather than some other shell program. Note also the location of /bin/bash.
It is in the top-level folder of your system (/bin), which means it is a pretty baked-in utility that
came with your GNU/Linux or MacOS operating system.

4.3 Launching MOOS Communities from the Launch Script

Take a look in the launch.sh file. It is an ”executable” and we may be accustomed to think of
executables as binary files, not human readable. But a Bash script is just a text file, and can be
opened in your normal text editor. For the immediate purposes of this lab, most of this script will
be left for explaining later, but we will want to edit this script to launch three MOOS communities
in the next exercise. Open the file in a text editor and find the block:

#----------------------------------------------------------

# Part 3: Launch the processes

#----------------------------------------------------------

echo "Launching $COMMUNITY MOOS Community with WARP:" $TIME_WARP

pAntler $COMMUNITY.moos --MOOSTimeWarp=$TIME_WARP >& /dev/null &

uMAC -t $COMMUNITY.moos

In the block above, a single MOOS community, whose name is stored in the variable $COMMUNITY,
is launched. It is launched using pAntler in the background, indicated by the trailing ampersand
on that line. After the MOOS community is launched, the uMAC utility is launched to provide an
interactive Appcast session from the terminal window.

Modify and expand the above block with the one below, which essentially does the same thing but
launches the shoreside, alpha and bravo communities with three successive pAntler calls.

10



#----------------------------------------------------------

# Part 3: Launch the processes

#----------------------------------------------------------

echo "Launching All MOOS Communities with WARP:" $TIME_WARP

pAntler shoreside.moos --MOOSTimeWarp=$TIME_WARP >& /dev/null &

pAntler alpha.moos --MOOSTimeWarp=$TIME_WARP >& /dev/null &

pAntler bravo.moos --MOOSTimeWarp=$TIME_WARP >& /dev/null &

uMAC -t shoreside.moos

4.4 Bash Script Command Line Arguments

Bash scripts, like C++ programs, can be built to support command line arguments. As a convention
in our lab, all launch.sh scripts will accept a single numerical argument, interpreted as the time
warp for the mission. Omitting this argument will result in a time warp of 1. For example:

$ ./launch.sh 10 (launch the mission with time warp 10)

Generally speaking, there are two other types of command line arguments. The simpler of the two
involves the detection of an argument:

$ ./launch.sh --verbose

The other type of argument passes a parameter value. For example:

$ ./launch.sh --depth_thresh=45 --vehicle_name=henry

Command line parsing is generally handle at the outset of the script. Here is an example block:

11



5 Further Experimenting with pShare

Before moving on to use the uField Toolbox in the next section, we have one more mission
experimenting with the pShare utility directly. Before going much further, it may be a good spot to
discuss launch scripts.

5.1 Assignment 3 (check off) - The Alpha Bravo pShare Mission

In this part we will:

� Prepare a copy of the previous modified alpha mission for experimenting (the Alpha pShare
Mission from the Pre-Lab).

� Create a third .moos file, bravo.moos, to launch another simulated vehicle.

� Launch the three communities and confirm that sharing works, and deploy and return
commands work for both vehicles with a single pMarineViewer button click.

5.1.1 Make a Copy of the Previous Two-MOOS-Communiity Alpha mission

The first step is to copy the alpha example mission from the last exercise from the Pre-Lab. The
file structure should be:

moos-ivp-extend/missions/lab_06/alpha_bravo_pshare

shoreside.moos

alpha.moos

bravo.moos

launch.sh

clean.sh

You should have a script for launching all three communities.

5.1.2 Create a New bravo.moos File for Simulating a Second Vehicle

In this step you will create a third mission file, bravo.moos, for simulating a second vehicle. In the
bravo.moos file, you will need to configure it with a distinct community name, e.g., bravo, distinct
port number, and distinct port number for UDPListen in the pShare configuration block.

A bravo.bhv file will also need to be created for this vehicle. The behavior mission is not the
point of focus here, so just create a waypoint survey mission similar to alpha’s with the vertices
shifted 50 meters to the east, and 20 meters to the south. Shift the bravo vehicle’s starting position
50 meters to the east (in the uSimMarine configuration block). The shoreside.moos will also need to
be altered to share the DEPLOY and RETURN commands out to both vehicles with a single button click.

5.1.3 Launch the Three Communities and Confirm Things Work

Your final mission configuration should meet the following criteria:

1. You should be able to launch both vehicles and the shoreside community with a single shell
script (See section 4).

2. You should be able to deploy and return both vehicles with a single button click in pMarineViewer.

12



3. The vehicles and the mission waypoints for both vehicles should be viewable in pMarineViewer.

4. Your pMarineViewer should also be configured to deploy or return a single chosen vehicle in
isolation. Hint: use the actions parameter in pMarineViewer to add deploy-alpha, return-bravo
etc. capability in the Action pull-down menu.

It should look something like the video posted at:

Figure 3: A simple two-vehicle mission connecting to vehicle communities, and a shoreside community, using pShare.

video:(0:21): https://vimeo.com/87900172

13

https://vimeo.com/87900172


6 Using the uField Toolbox to Facilitate Multi-Vehicle Simulations

In the next exercise, the goal is to create an autonomy mission that uses a few modules in the uField
Toolbox to replace some of the pShare configuration steps used in the previous exercise. Our end
goal is a two vehicle simulation that should be easily scalable to a larger number of vehicles.

Once we have the multi-vehicle simulation established, our goal in the next lab will be to build
a mission where two simulated vehicles are receiving points in the x-y plane, from the shoreside
community, and traversing those points in a shortest-path trajectory.

6.1 Assignment 4 (self check off) - The Henry Gilda Baseline Mission

In this part we will:

� Copy the baseline mission from the moos-ivp missions-2680 folder.

� Note the structure of the launch script and the nsplug setup.

� Note the roles of uFldShoreBroker, uFldNodeBroker, and pHostInfo.

Copy the baseline mission from the moos-ivp tree

Start by copying a baseline version of the mission from the moos-ivp-2680 tree:

$ cd moos-ivp-2680/missions

$ cp -rp lab_06_henry_gilda_baseline moos-ivp-extend/missions/lab_06/henry_gilda_baseline

Confirm that the mission launches properly by typing ./launch.sh 10 from the command line in
your newly created folder. You should see two vehicles appear on the screen. Deploy them with the
DEPLOY button, and return them with the RETURN button. At any time you can station-keep them by
hitting the STATION button. The vehicle should automatically enter the station keeping mode upon
returning.

It should look something like the video posted at:

14



Figure 4: A simple two-vehicle mission connecting two loitering vehicle communities, and a shoreside community,
using the uField Toolbox utilities for coordinating the pShare connections.

video:(0:20): https://vimeo.com/87907093

Understand the Launch Structure

Before moving on, take a look at how things are launched. See if you can understand what is going
on inside the launch script. Note that the script is building the target .moos files by invoking an
application called nsplug. This tool is a bit like the cpp pre-processor. It takes as an argument a
file which can be thought of as a template of sorts, and produces another file with components of
the template filled in. We use it so we can have just one mission and behavior file for both vehicles,
with just a few of the details such as vehicle name, start position and MOOS community values
filled in at launch time. You can learn a bit more about nsplug by:

$ nsplug -h

$ nsplug -m | less

Note that the targ * files are generated automatically each time the launch script is invoked. If you
edit these files, the changes will be lost the next time you launch!

Note that the launch script defines certain variables such as the vehicle name, MOOSDB port etc., and
passes this info into nsplug for expansion.

Understand the uField Toolbox Operations

Before moving on, take a look at the relationship between pHostInfo, uFldNodeBroker and uFldShoreBroker.
Note how they handle the pShare configuration for you on both ends. From this point forward,

15

https://vimeo.com/87907093


using these tools, your configuration of share variables should be handled in this way. Please read
the sections on these three applications in the uField Toolbox documentation on the course website.
Also the lecture notes describe how these three applications work together:

http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2022.pdf

For now, beginning with this baseline mission, share configuration will just work. But you will
want to augment what is being shared for later steps in this lab, so try to understand how share
configuration is handled in the uFldNodeBroker and uFldShoreBroker modules.

6.2 Assignment 5 (self check off) - The Henry Gilda Refuel Mission

Copy your ”Henry Gilda Baseline” mission from the previous assignment to create a new mission
folder:

$ cd moos-ivp-extend/missions/lab_06/

$ cp -rp henry_gilda_baseline henry_gilda_refuel

Augment this mission to accept a shoreside ”refuel” command from a new pMarineViewer button.
When the refuel command is given, the vehicle returns to its launch point, but automatically enters a
new ”refueling” mission mode while station keeping, for 60 seconds, and then automatically resumes
loitering.

To accomplish this mission you will need to:

� Add a new refuel button to the pMarineViewer configuration that accepts a refueling command
by posting REFUEL NEEDED ALL=true.

� Make sure this variable is shared out to all vehicles by augmenting the uFldShoreBroker

configuration block in the meta shoreside.moos file.

� (Remember - don’t edit the targ * files since these are auto-generated in the launch process
and will be overwritten each time the mission is launched!)

� Add a new Timer behavior in the vehicle behavior configuration file that begins each time
the vehicle returns for refueling, waits 60 seconds, and then posts endflags that result in the
vehicle resuming its loiter missions. The vehicle should automatically go back to loitering after
the timer ends.

� Station keeping should still work at any time, if commanded by the user.

� The vehicle may still be returned with the RETURN button, but when returned in this way, it
acts as it did in the baseline mission - it station keeps and remains station keeping indefinitely
until re-deployed.

It should look something like the video posted at:

16

http://oceanai.mit.edu/2.680/docs/2.680-07-multiple_vehicles_2022.pdf


Figure 5: The Henry Gilda Refuel mission has two loitering vehicles. When the user commands the vehicles to return,
they return to their starting point and station keep for 60 seconds and automatically re-deploy afterwards. As with
the baseline mission, both vehicles have their own MOOS community, connected to a shoreside community, with the
connections coordinated using the uField Toolbox utilities.

video:(0:40): https://vimeo.com/87950212

6.3 Assignment 6 (check off) - The Henry Gilda Auto Refuel Mission

Copy your ”Henry Gilda Refuel” mission from the previous assignment to create a new mission
folder:

$ cd moos-ivp-extend/missions/lab_06/

$ cp -rp henry_gilda_refuel henry_gilda_auto_refuel

Augment this mission such that (a) the vehicles automatically initiate the refueling after a fixed
time ”no-refuel-needed” interval (use 300 seconds for testing), (b) the so-called ”no-refuel-needed”
time duration is paused whenever the vehicle is in the station keeping mode. Presumably because
no fuel is being expended. (c) the hierarchical mode structure has an explicit ”refueling” mode
while refueling.

To accomplish this mission you will need to:

� Add a new Timer behavior in vehicle behavior configuration file that begins when the mission
begins and counts down until re-fueling is needed. It should post end-flags that trigger a
mode change and the process of returning for re-fueling. It should be re-set after re-fueling is
complete (it will need to have the perpetual parameter set to true).

17

https://vimeo.com/87950212


� As before, station keeping should still work at any time, if commanded by the user. The
need-to-refuel timer should also be paused when or if the vehicle is station-keeping.

� Remember: Don’t edit the targ * files since these are auto-generated in the launch process
and will be overwritten each time the mission is launched!

It should look something like the video posted at:

Figure 6: The Henry Gilda Refuel mission has two loitering vehicles. When the user commands the vehicles to return,
they return to their starting point and station keep for 60 seconds and automatically re-deploy afterwards. As with
the baseline mission, both vehicles have their own MOOS community, connected to a shoreside community, with the
connections coordinated using the uField Toolbox utilities.

video:(0:47): https://vimeo.com/87958055

7 Instructions for Handing In Assignments

7.1 Requested File Structure

You are encouraged to continue to upload all mission files. Here is the requested file structure:

18

https://vimeo.com/87958055


moos-ivp-extend/

missions/

lab_06/

xrelay_pshare/ // Assignment 1 - self check off (pre-lab)

alpha_pshare/ // Assignment 2 - self check off (pre-lab)

alpha_bravo_pshare/ // Assignment 3 - check off

henry_gilda_baseline/ // Assignment 4 - self check off

henry_gilda_refuel/ // Assignment 5 - self check off

henry_gilda_auto_refuel/ // Assignment 6 - check off

7.2 Due Date

This lab should be completed and ready for demonstration/check-off by the end of lab Thursday,
March 7th, 2024 (Pi Day!).

19


	Overview and Objectives
	Preliminaries
	The Shoreside (Topside) / Vehicle Topology
	A Very Brief Discussion on Launch Scripts
	Why Launch Scripts are Used
	Launch Scripts are Bash Scripts
	Launching MOOS Communities from the Launch Script
	Bash Script Command Line Arguments

	Further Experimenting with pShare
	Assignment 3 (check off) - The Alpha Bravo pShare Mission

	Using the uField Toolbox to Facilitate Multi-Vehicle Simulations
	Assignment 4 (self check off) - The Henry Gilda Baseline Mission
	Assignment 5 (self check off) - The Henry Gilda Refuel Mission
	Assignment 6 (check off) - The Henry Gilda Auto Refuel Mission

	Instructions for Handing In Assignments
	Requested File Structure
	Due Date


