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1 Overview

The uSimMarineV22 application is a 3D vehicle simulator that updates vehicle state, position and
trajectory, based on the present actuator values and prior vehicle state. This app is the successor
to the uSimMarine app. Released in 2022, uSimMarineV22 is a backward compatible superset of
uSimMarine, with the following notable changes or additions:



e Embeded PID controller: The user has the option to embed a PID controller within the
simulator for near-zero latency between PID output and simulator position updates. This
allows for substantial increases in maximum time warp. Where previous missions had a
maximum time warp of say 50x realtime, 200x to 300x realtime has been observed.

e Worm holes: A worm hole a region in the operation area that will consume an vehicle, and
instantly shift its position to another region in the operating area. This facilitates missions
where traffic patterns of several contacts are used for testing collision avoidance.

e Sailing: The simulator will apply basic sailing effects on the vehicle given (a) a polar plot
describing vehicle speed relative to a given wind direction and magnitude, (b) incoming
updates to the current wind direction and magnitude.

The typical usage scenario has a single instance of uSimMarineV22 associated with each simulated
vehicle, as shown in Figure 1.

N-vehicle Simulation

One Vehicle A

usimMarine®

Figure 1: Typical uSimMarineV22 Usage: In an N-vehicle simulation, an instance if uSimMarineV22 is used for
each vehicle. Each simulated vehicle typically has its own dedicated MOOS community. The IvP Helm (pHelmIvP)
publishes high-level control decisions. The PID controller (pMarinePID) converts the high-level control decisions to
low-level actuator decisions. Finally the simulator (uSimMarineV22) reads the low-level actuator postings to produce a
new vehicle position.

This style of simulation can be contrasted with simulators that simulate a comprehensive set
of aspects of the simulation, including multiple vehicles, and aspects of the environment and
communications. The uSimMarineV22 simulator simply focuses on a single vehicle. It subscribes for
the vehicle navigation state variables:

e NAV_X, NAV_Y, NAV_SPEED, NAV_HEADING, and NAV_DEPTH
as well as the actuator values

e DESIRED_RUDDER, DESIRED_THRUST, and DESIRED_ELEVATOR.

The simulator accommodates a notion of external drifts applied to the vehicle to crudely simulate
current or wind. These drifts may be set statically or may be changing dynamically by other



MOOS processes. The simulator also may be configured with a simple geo-referenced data structure
representing a field of water currents.

Under typical UUV payload autonomy operation, the simulator and pMarinePID MOOS modules
would not be present. The vehicle’s native controller would handle the role of pVMarinePID, and the
vehicle’s native navigation system (and the vehicle itself) would handle the role of the simulator.

2 Configuration Parameters for uSimMarineV22

The following parameters are defined for uSimMarineV22. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated so in parentheses below.

Listing 2.1: Configuration Parameters for uSimMarine V22.

buoyancy_rate:

current_field:
current_field active:
default_water_depth:
drift_vector:
rotate_speed:

drift x:

drift_y:
max_acceleration:
max_deceleration:

max_depth_rate:

max_depth_rate_speed:
prefix:

sim_pause:
start_depth:
start_heading:
start_pos:

start_speed:
start_x:
start_y:
thrust_factor:

thrust_map:

thrust_reflect:

Rate, in meters per second, at which vehicle floats to surface at zero
speed. The default is zero. Section 5.4.

A file containing the specification of a current field.

If true, simulator uses the current field if specified.

Default value for local water depth for calculating altitude (0).

A pair of external drift values, direction and magnitude.

An external rotational speed in degrees per second (0).

An external drift value applied in the x direction (0).

An external drift value applied in the y direction (0).

Maximum rate of vehicle acceleration in m/s? (0.5).

Maximum rate of vehicle deceleration in m/s? (0.5).

Maximum rate of vehicle depth change, meters per second. The defauls
is 0.5. Section 5.4.

Vehicle speed at which max depth rate is achievable (2.5). Section 5.4.
Prefix of MOOS variables published. The default is USM._.

If true, the simulation is paused. The default is false.

Initial vehicle depth in meters. The default is zero. Section 4.

Initial vehicle heading in degrees. The default is zero. Section 4.

A full starting position and trajectory specification. Section 4.

Initial vehicle speed in meters per second. The default is zero. Section
4.

Initial vehicle  position in local coordinates. The default is zero. Section
4.

Initial vehicle y position in local coordinates. The default is zero. Section
4.

A scalar correlation between thrust and speed. The default is 20.

A mapping between thrust and speed values. Section 8.

If true, negative thrust is simply opposite positive thrust. The default
is false. Section 8.



turn_loss: A range [0, 1] affecting speed lost during a turn. The default is 0.85.

turn_rate: A range [0,100] affecting vehicle turn radius, e.g., 0 is an infinite turn
radius. The default is 70.

An Example MOOS Configuration Block

An example MOOS configuration block is provided in Listing 2 below. This can also be obtained
from a terminal window with:

$ uSimMarineV22 --example or -e

Listing 2.2: Example configuration of the uSimMarine V22 application.

1

2 uSimMarineV22 Example MOOS Configuration

3

4

5 ProcessConfig = uSimMarineV22

6 {

7 AppTick =4

8 CommsTick = 4

9

10 start_x =0

11 start_y =0

12 start_heading = 0

13 start_speed =0

14 start_depth =0

15 start_pos = x=0, y=0, speed=0, heading=0, depth=0
16

17 drift_x =0

18 drift_y =0

19 rotate_speed = 0
20 drift_vector = 0,0 // heading, magnitude
21
22 buoyancy_rate = 0.025 // meters/sec
23 max_acceleration =0 // meters/sec”2
24 max_deceleration = 0.5 // meters/sec”2
25 max_depth_rate = 0.5 // meters/sec
26 max_depth_rate_speed = 2.0 // meters/sec
27
28 sim_pause = false // or {true}
29 dual_state = false // or {true}
30 thrust_reflect = false // or {true}
31 thrust_factor = 20 // range [0,inf)
32 turn_rate =70 // range [0,100]
33 thrust_map = 0:0, 20:1, 40:2, 60:3, 80:5, 100:5
34 }



3 Publications and Subscriptions for uSimMarineV22

The interface for uSimMarineV22, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

‘ $ usimMarine --interface or -i ‘

3.1 Variables Published by uSimMarineV22

The primary output of uSimMarineV22 to the MOOSDB is the full specification of the updated
vehicle position and trajectory, along with a few other pieces of information:

e APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

e BUOYANCY_REPORT:

e TRIM_REPORT:

e USM_ALTITUDE: The updated vehicle altitude in meters if water depth known.

e USM_DEPTH: The updated vehicle depth in meters. Section 5.4.

e USM_DRIFT_SUMMARY: A summary of the current total external drift.

e USM_HEADING: The updated vehicle heading in degrees.

e USM_HEADING OVER_GROUND: The updated vehicle heading over ground.

e USM_LAT: The updated vehicle latitude position.

e USM_LONG: The updated vehicle longitude position.

e USM_RESET _COUNT: The number of time the simulator has been reset.

e USM_SPEED: The updated vehicle speed in meters per second.

e USM_SPEED_OVER_GROUND: The updated speed over ground.

e USM X: The updated vehicle x position in local coordinates.

e USM_Y: The updated vehicle y position in local coordinates.

e USM_YAW: The updated vehicle yaw in radians.

An example USM_DRIFT_SUMMARY string: "ang=90, mag=1.5, xmag=90, ymag=0".

3.2 Variables Subscribed for by uSimMarineV22

The uSimMarineV22 application will subscribe for the following MOOS variables:

e APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration. See the documentation on Appcasting.

e DESIRED THRUST: The thruster actuator setting, [—100, 100].

e DESIRED RUDDER: The rudder actuator setting, [—100, 100].

e DESIRED_ELEVATOR: The depth elevator setting, [—100, 100].

e USM_SIM PAUSED: Simulation pause request, either true or false.

e USM_CURRENT FIELD: If true, a configured current field is active.

e USM_BUOYANCY RATE: Dynamically set the zero-speed float rate.



e ROTATE SPEED: Dynamically set the external rotational speed.

e DRIFT_X: Dynamically set the external drift in the = direction.

e DRIFT_Y: Dynamically set the external drift in the y direction.

e DRIFT VECTOR: Dynamically set the external drift direction and magnitude.

e DRIFT_VECTOR_ADD: Dynamically modify the external drift vector.

e DRIFT VECTOR MULT: Dynamically modify the external drift vector magnitude.

e USM RESET: Reset the simulator with a new position, heading, speed and depth.
e WATER DEPTH: Water depth at the present vehicle position.

Each iteration, after noting the changes in the navigation and actuator values, it posts a new set of
navigation state variables in the form of USM_X, USM_Y, USM_SPEED, USM_HEADING, USM_DEPTH.

3.3 Command Line Usage of uSimMarineV22

The uSimMarineV22 application is typically launched as a part of a batch of processes by pAntler,
but may also be launched from the command line by the user. The basic command line usage for
the uSimMarineV22 application is the following:

Listing 3.3: Command line usage for the uSimMarineV22 application.

1 Usage: uSimMarineV22 file.moos [OPTIONS]

2

3 Options:

4 --alias=<ProcessName>

5 Launch uSimMarineV22 with the given process name
6 rather than uSimMarineV22.

7 --example, -e

8 Display example MOOS configuration block.

9 --help, -h

10 Display this help message.

11 --version,-v

12 Display the release version of uSimMarineV22.

4 Setting the Initial Vehicle Position, Pose and Trajectory

The simulator is typically configured with a vehicle starting position, pose and trajectory given by
the following five configuration parameters:

® start x

® start.y

e start_heading
® start_speed

e start_depth

The position is specified in local coordinates in relation to a local datum, or (0,0) position. This
datum is specified in the .moos file at the global level. The heading is specified in degrees and
corresponds to the direction the vehicle is pointing. The initial speed and depth by default are zero,
and are often left unspecified in configuration. Alternatively, the same five parameters may be set
with the start pos parameter as follows:



start_pos = x=100, y=150, speed=0, heading=45, depth=0

The simulator can also be reset at any point during its operation, by posting to the MOOS variable
USM_RESET. A posting of the following form will reset the same five parameters as above:

USM_RESET = x=200, y=250, speed=0.4, heading=135, depth=10

This has been useful in cases where the objective is to observe the behavior of a vehicle from several
different starting positions, and an external MOOS script, e.g., uTimerScript, is used to reset the
simulator from each of the desired starting states.

5 Propagating the Vehicle Speed, Heading, Position and Depth

The vehicle position is updated on each iteration of the uSimMarinev22 application, based on (a)
the previous vehicle state, (b) the elapsed time since the last update, AT, (c¢) the current actuator
values, DESTRED RUDDER, DESIRED THRUST, and DESIRED ELEVATOR, and (d) several parameter settings
describing the vehicle model.

For simplicity, this simulator updates the vehicle speed, heading, position and depth in sequence,
in this order. For example, the position is updated after the heading is updated, and the new
position update is made as if the new heading were the vehicle heading for the entire AT. The error
introduced by this simplification is mitigated by running uSimMarinev22 with a fairly high MOOS
AppTick value keeping the value of AT sufficiently small.

5.1 Propagating the Vehicle Speed

The vehicle speed is propagated primarily based on the current value of thrust, which is presumably
refreshed upon each iteration by reading the incoming mail on the MOOS variable DESTRED_THRUST.
To simulate a small speed penalty when the vehicle is conducting a turn through the water, the new
thrust value may also be affected by the current rudder value, referenced by the incoming MOOS
variable DESIRED RUDDER. The newly calculated speed is also dependent on the previously noted
speed noted by the incoming MOOS variable NAV_SPEED, and the settings to the two configuration
parameters MAX_ACCELERATION and MAX DECELERATION.

The algorithm for updating the vehicle speed proceeds as:

1. Calculate v;(gpy), the new raw speed based on the thrust.

2. Calculate vjyry), an adjusted and potentially lower speed, based on the raw speed, v;(pay),
and the current rudder angle, DESTRED_RUDDER.

3. Calculate v;Fmnr), an adjusted and potentially lower speed based on v;(ygy), compared to
the prior speed. If the magnitude of change violates either the max acceleration or max
deceleration settings, then the new speed is clipped appropriately.

4. Set the new speed to be v;Fryar), and use this new speed in the later updates on heading,
position and depth.

Step 1: In the first step, the new speed is calculated by the current value of thrust. In this case the
thrust map is consulted, which is a mapping from possible thrust values to speed values. The thrust



map is configured with the THRUST MAP configuration parameter, and is described in detail in Section
8.

Vjawy = THRUST_MAP(DESIRED_THRUST)

Step 2: In the second step, the calculated speed is potentially reduced depending on the degree to
which the vehicle is turning, as indicated by the current value of the MOOS variable DESTRED RUDDER.
If it is not turning, it is not diminished at all. The adjusted speed value is set according to:

|RUDDER|
100

Vi rumy = Vi * (1 — ( * TURN_LOSS) )
The configuration parameter turn_loss is a value in the range of [0,1]. When set to zero, there is

no speed lost in any turn. When set to 1, there is a 100% speed loss when there is a maximum
rudder. The default value is 0.85.

Step 3: In the last step, the candidate new speed, vj g, , is compared with the incoming vehicle
speed, v;_1. The elapsed time since the previous simulator iteration, AT, is used to calculate the
acceleration or deceleration implied by the new speed. If the change in speed violates either the
min acceleration, Oor max_acceleration parameters, the speed is adjusted as follows:

Vg — Vi—
v;—1 + (MAX_ACCELERATION % AT) W > MAX_ACCELERATION,

_ it =
Vigmay — § Vi—1 — (MAX_DECELERATION x AT) w > MAX_DECELERATION,
Vi rgmy otherwise.

Step 4: The final speed from the previous step is posted by the simulator as USM_SPEED, and is used
the calculations of position and depth, described next.

5.2 Propagating the Vehicle Heading

The vehicle heading is propagated primarily based on the current RUDDER value which is refreshed
upon each iteration by reading the incoming mail on the MOOS variable DESTRED RUDDER, and the
elapsed time since the simulator previously updated the vehicle state, AT. The change in heading
my also be influenced by the THRUST value from the MOQOS variable DESIRED THRUST, and may also
factor an external rotational speed.

The algorithm for updating the new vehicle heading proceeds as:

1. Calculate AG;gay), the new raw change in heading influenced only by the current rudder value.

2. Calculate Af;uryst), an adjusted change in heading, based on the raw change in heading,
Ab;@aw), and the current THRUST value.

3. Calculate Af;gxreryar), an adjusted change in heading considering external rotational speed.

4. Calculate 6;, the final new heading based on the calculated change in heading and the previous
heading, and converted to the range of [0, 359].



Step 1: In the first step, the new heading is calculated by the current RUDDER value:

TURN_RATE
Ab; gy = RUDDER ¥ ————— % AT
2 (RAW) 100
The TURN_RATE is an uSimMarineV22 configuration parameter with the allowable range of [0, 100]. The
default value of this parameter is 70, chosen in part to be consistent with the performance of the
simulator prior to this parameter being exposed to configuration. A value of 0 would result in the
vehicle never turning, regardless of the rudder value.

Step 2: In the second step the influence of the current vehicle thrust (from the MOOS variable
DESIRED THRUST) may be applied to the change in heading. The magnitude of the change of heading
is adjusted to be greater when the thrust is greater than 50% and less when the thrust is less than

50%.

|THRUST| — 50
_.l_ [ E——

AHi(THRUST) = HimAw) * (1 50

)

The direction in heading change is then potentially altered based on the sign of the THRUST:

- AH’i(THRUST) THRUST < O,

Aei(TﬂRUST) otherwise.

Aei(THRUST) = {

Step 3: In the third step, the change in heading may be further influenced by an external rotational
speed. This speed, if present, would be read at the outset of the simulator iteration from either the
configuration parameter rotate speed, or dynamically from the MOOS variable ROTATE _SPEED. The
updated value is calculated as follows:

AHi(EXTERNAL) = ei(THRUST) + (ROTATE,SPEED * AT)

Step 4: In final step, the final new heading is set based on the previous heading and the change in
heading calculated in the previous three steps. If needed, the value of the new heading is converted
to its equivalent heading in the range [0, 359].

0; = heading360(6;_1 + Ab; exremusy)

The simulator then posts this value to the MOOSDB as USM_HEADING.

5.3 Propagating the Vehicle Position

The vehicle position is propagated primarily based on the newly calculated vehicle heading and
speed, the previous vehicle position, and the elapsed time since updating the previous vehicle
position, AT.

The algorithm for updating the new vehicle position proceeds as:



1. Calculate the vehicle heading and speed used for updating the new vehicle position, with the
heading converted into radians.

2. Calculate the new positions, z; and y;, based on the heading, speed and elapsed time.

3. Calculate a possibly revised new position, factoring in any external drift.

Step 1: In the first step, the heading value, 8, and speed value, ¥ used for calculating the new vehicle
position is set averaging the newly calculated values with their prior values:

_ (v +2Ui—1) (1)

]|

0 = atan2(s, c)

where s and c are given by:

s = sin(0;—17/180) + sin(6;7/180)
¢ = cos(6;—1m/180) + cos(0;7/180)

The above calculation of the heading average handles the issue of angle wrap, i.e., the average of
359 and 1 is zero, not 180.

Step 2: The vehicle z and y position is updated by the following two equations:

r; = i1 + sin(0) * 0 x AT
Yi = Yi—1 + cos(f) * v x AT
The above is calculated keeping in mind the difference in convention used in marine navigation

where zero degrees is due North and 90 degrees is due East. That is, the mapping is as follows from
marine to traditional trigonometric convention: 0° — 90°, 90° — 0°, 180° — 270°, 270° — 180°.

Step 3. The final step adjusts the x, and y position from above, taking into consideration any
external drift that may be present. This drift includes both the drift that may be directed from
the incoming MOOS variables as described in Section 7. The drift components below are also a
misnomer since they are provided in units of meters per second.

Z; = X; + EXTERNAL DRIFT X * AT (2)

Y; = Y; + EXTERNAL DRIFT.Y * AT (3)

5.4 Propagating the Vehicle Depth

Depth change in uSimMarineV22 is simulated based on a few input parameters. The primary
parameter that changes from one iteration to the next is the ELEVATOR actuator value, from the
MOOS variable DESIRED ELEVATOR. On any given iteration the new vehicle depth, z;, is determined
by:

zi = zi—1 + (& * At)

10



The new vehicle depth is altered by the depth change rate, z;, applied to the elapsed time, At,
which is roughly equivalent to the apptick interval set in the uSimMarineV22 configuration block.
The depth change rate on the current iteration is determined by the vehicle speed and the ELEVATOR
actuator value, and by the following three vehicle-specific simulator configuration parameters that
allow for some variation in simulating the physical properties of the vehicle. The buoyancy rate,
for simplicity, is given in meters per second where positive values represent a positively buoyant
vehicle. The max depth rate, and max depth rate speed parameters determine the function(s) shown
in Figure 2. The vehicle will have a higher depth change rate at higher speeds, up to some maximum
speed where the speed no longer affects the depth change rate. The actual depth change rate then
depends on the elevator and vehicle speed.

depth change rate
max_depth_rate_speed

{

max_depth_rate depth change rate vs. speed

at 100% elevator

at 50% elevator

Vehicle speed

at 50% downward elevator

- max_depth rate at 100% downward elevator

Figure 2: The relationship between the rate of depth change rate, given a current vehicle speed. Different elevator
settings determine unique curves as shown.

The value of the depth change rate, v;, is determined as follows:

v o  ELEVATOR
)° % MAX_DEPTH RATE + BUOYANCY_RATE (4)

MAX_DEPTH_RATE_SPEED 100

5= (

Both fraction components in the above equation are clipped to [—1,1]. When the vehicle is in
reverse thrust and has a negative speed, this equation still holds. However, a vehicle would likely
not have a depth change rate curve symmetric between positive and negative vehicle speeds. By
default the value of buoyancy rate is set to 0.025, slightly positively buoyant, max depth rate is set
to 0.5, and max depth rate speed is set to 2.0. The prevailing buoyancy rate may be dynamically
adjusted by a separate MOOS application publishing to the variable BUDOYANCY RATE.
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6 Propagating the Vehicle Altitude

The vehicle altitude is base solely on the current vehicle depth and the depth of the water at the
current vehicle position. If nothing is known about the water depth, then USM_ALTITUDE is not
published. The simulator may be configured with a default water depth:

default_water_depth = 100

This will allow the simulator to produce some altitude information if needed for testing consumers
of USM_ALTITUDE information. Furthermore, the simulator subscribes for water depth information in
the variable USM_WATER DEPTH which could conceivably be produced by another MOOS application
with access to bathymetry data and the vehicle’s navigation position.

7 Simulation of External Drift

When the simulator updates the vehicle position as in equations provided in Section 5.3, it factors a
possible external drift in the = and y directions, in the term EXTERNAL _DRIFT_X, and EXTERNAL_DRIFT_X
respectively. The external drift may have two distinct components; a drift applied generally, and a
drift applied due to a current field configured with an external file correlating drift vectors to local
x and y positions. These drifts may be set in one of three ways discussed next.

7.1 External X-Y Drift from Initial Simulator Configuration

An external drift may be configured upon startup by either specifying explicitly the drift in the
x and y direction, or by specifying a drift magnitude and direction. Figure 3 shows two external
drifts each with the appropriate configuration using either the drift_x and drift_y parameters or
the single drift vector parameter:

3

DRIFT_X
DRIFT_Y

DRIFT VECTOR

.2
.2

= 45,

0.283

X

DRIFT X
DRIFT Y

>

-0.087
0.05

DRIFT VECTOR = 300, 0.1

Figure 3: External Drift Vectors: Two drift vectors each configured with either the drift x and drift_y
configuration parameters or their equivalent single drift_vector parameter.

If, for some reason, the user mistakenly configures the simulator with both configuration styles,
the configuration appearing last in the configuration block will be the prevailing configuration. If
uSimMarineV22 is configured with these parameters, these external drifts will be applied on the very
first iteration and all later iterations unless changed dynamically, as discussed next.

12



7.2 External X-Y Drift Received from Other MOOS Applications

External drifts may be adjusted dynamically by other MOOS applications based on any criteria
wished by the user and developer. The uSimMarineV22 application registers for the following
MOOS variables in this regard: DRIFT X, DRIFT_Y, DRIFT VECTOR, DRIFT _VECTOR_ADD, DRIFT_VECTOR MULT.
The first three variables simply override the previously prevailing drift, set by either the initial
configuration or the last received mail concerning the drift.

By posting to the USM_DRIFT_VECTOR_MULT variable the magnitude of the prevailing vector may be
modified with a single multiplier such as:

DRIFT_VECTOR_MULT
DRIFT_VECTOR_MULT

2
-1

The first MOOS posting above would double the size of the prevailing drift vector, and the second
example would reverse the direction of the vector. The DRIFT_VECTOR_ADD variable describes a drift
vector to be added to the prevailing drift vector. For example, consider the prevailing drift vector
shown on the left in Figure 3, with the following MOOS mail received by the simulator:

DRIFT_VECTOR_ADD = "262.47, 15.796"

The resulting drift vector would be the vector shown on the right in Figure 3. This interface opens
the door for the scripting changes to the drift vector like the one below, that crudely simulate a
gust of wind in a given direction that builds up to a certain magnitude and dies back down to a net
zero drift.

DRIFT_VECTOR_ADD = 137, 0.25
DRIFT_VECTOR_ADD = 137, 0.25
DRIFT_VECTOR_ADD = 137, 0.25
DRIFT_VECTOR_ADD = 137, 0.25
DRIFT_VECTOR_ADD = 137, 0.25
DRIFT_VECTOR_ADD = 137, -0.25
DRIFT_VECTOR_ADD = 137, -0.25
DRIFT_VECTOR_ADD = 137, -0.25
DRIFT_VECTOR_ADD = 137, -0.25
DRIFT_VECTOR_ADD = 137, -0.25

The above style script was described in the documentation for uTimerScript, where the uTimerScript
utility was used to simulate wind gusts in random directions with random magnitude. The DRIFT *
interface may also be used by any third party MOOS application simulating things such as ocean or
wind currents.
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8 The ThrustMap Data Structure

A thrust map is a data structure that may be used to simulate a non-linear relationship between
thrust and speed. This is configured in the uSimMarineV22 configuration block with the thrust map
parameter containing a comma-separated list of colon-separated pairs. Each element in the comma-
separated list is a single mapping component. In each component, the value to the left of the colon
is a thrust value, and the other value is a corresponding speed. The following is an example mapping
given in string form, and rendered in Figure 4.

thrust_map = "-100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5"
E T : 5.0m/s
0 speed v
i i
| !
— i .
! !
-3.5m/s : E
; i
min zero Max
thrust thrust thrust
(-100) (100)

Figure 4: A Thrust Map: The example thrust map was defined by seven mapping points in the string ”-100:-3.5,
-75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5”.

8.1 Automatic Pruning of Invalid Configuration Pairs

The thrust map has an immutable domain of [—100, 100], indicating 100% forward and reverse
thrust. Mapping pairs given outside this domain will simply be ignored. The thrust mapping must
also be monotonically increasing. This follows the intuition that more positive thrust will not result
in the vehicle going slower, and likewise for negative thrust. Since the map is configured with a
sequence of pairs as above, a pair that would result in a non-monotonic map is discarded. All maps
are created as if they had the pair 0:0 given explicitly. Any pair provided in configuration with zero
as the thrust value will ignored; zero thrust always means zero speed. Therefore, the following map
configurations would all be equivalent to the map configuration above and shown in Figure 4:

thrust_map = -120:-5, -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:5.0, 120:6
thrust_map = -100:-3.5, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 90:4, 100:5.0
thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:0, 20:2.4, 50:4.2, 80:4.8, 100:5.0

thrust_map = -100:-3.5, -75:-3.2, -10:-2, 0:1, 20:2.4, 50:4.2, 80:4.8, 100:5.0
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In the first case, the pairs "-120:-5" and "120:6" would be ignored since they are outside the
[—100, 100] domain. In the second case, the pair "90:4" would be ignored since its inclusion would
entail a non-monotonic mapping given the previous pair of "80:4.8". In the third case, the pair
"0:0" would be effectively ignored since it is implied in all map configurations anyway. In the fourth
case, the pair "0:1" would be ignored since a mapping from a non-zero speed to zero thrust is not
permitted.

8.2 Automatic Inclusion of Implied Configuration Pairs

Since the domain [—100,100] is immutable, the thrust map is altered a bit automatically when or if
the user provides a configuration without explicit mappings for the thrust values of —100 or 100. In
this case, the missing mapping becomes an implied mapping. The mapping 100:v is added where v
is the speed value of the closest point. For example, the following two configurations are equivalent:

-75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8
-100:-3.2, -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8, 100:4.8

thrust_map
thrust_map

8.3 A Shortcut for Specifying the Negative Thrust Mapping

For convenience, the mapping of positive thrust values to speed values can be used in reverse for
negative thrust values. This is done by configuring uSimMarineV22 with thrust_reflect=true, which
is false by default. If thrust reflect is false, then a speed of zero is mapped to all negative thrust
values. If thrust reflect is true, but the user nevertheless provides a mapping for a negative thrust
in a thrust map, then the thrust reflect directive is simply ignored and the thrust map is used
instead. For example, the following two configurations are equivalent:

thrust_map = -100:-5, -80:-4.8, -50:-4.2, -20:-2.4, 20:2.4, 50:4.2, 80:4.8, 100:5

and

thrust_map = 20:2.4, 50:4.2, 80:4.8, 100:5
thrust_reflect = true

8.4 The Inverse Mapping - From Speed To Thrust

Since a thrust map only permits configurations resulting in a non-monotonic function, the inverse
also holds (almost) as a valid mapping from speed to thrust. We say ”almost” because there is
ambiguity in cases where there is one or more plateau in the thrust map as in:

thrust_map = -75:-3.2, -10:-2, 20:2.4, 50:4.2, 80:4.8

In this case a speed of 4.8 maps to any thrust in the range [80, 100]. To remove such ambiguity, the
thrust map, as implemented in a C++ class with methods, returns the lowest magnitude thrust in
such cases. A speed of 4.8 (or 5 for that matter), would return a thrust value of 80. A speed of
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—3.2 would return a thrust value of —75. The motivation for this way of disambiguation is that if a
thrust value of 80 and 100, both result in the same speed, one would always choose the setting that
conserves less energy. Reverse mappings are not used by the uSimMarineV22 application, but may
be of use in applications responsible for posting a desired thrust given a desired speed, as with the
pMarinePID application.

8.5 Default Behavior of an Empty or Unspecified ThrustMap

If uSimMarineV22 is configured without an explicit thrust map or thrust_reflect configuration, the
default behavior is governed as if the following two lines were actually included in the uSimMarineV22
configuration block:

100:5
false

thrust_map
thrust_reflect

The default thrust map is rendered in Figure 5.
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Figure 5: The Default Thrust Map: This thrust map is used if no explicit configuration is provided.

This default configuration was chosen for its reasonableness, and to be consistent with the behavior
of prior versions of uSimMarineV22 where the user did not have the ability to configure a thrust map.
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9 Wormbholes

A wormhole connects two points in space whereby a vehicle entering from one direction immediately
emerges at the opposite end. While the existence in nature is just a theory, their existence in
uSimMarineV22 is a feature now available as of July 2022.

9.1 Wormbhole Motivation

A goal of certain simulutions is to test vehicle performance, given some initial starting conditions. If
the goal is to test performace over say thousands of variations of the mission, the user has roughly
two options. (a) Repeatedly launch the mission with the right conditions, shut down the mission,
note the results, and repeat. (b) Within a single mission, repeatedly re-create the starting conditions,
let the event of interest unfold again, note the results and repeat.

The advantage of (a) is that the mission is short and ”clean”. There are no phases of the simulation
where the vehicles are re-setting or driving back to their starting positions. The drawback comes
with the overhead of repeatedly starting, killing, post-processing a simulation for each test of the
event of interest. The advantage of (b) is that many events are observed for a single mission start,
kill, post-process cycle. The drawbacks of (b) are that, between events, vehicles need to drive to
re-set the conditions for the event of interest. Consider the mission in Figure 6 below. A single
vehicle traverse a travel lane, where several contacts are crossing the lane. After the initial traversals,
each vehicle drives back to re-set the starting conditions.

Figure 6: Simulation with No Wormhole: A single vehicle, ownship, traverses a travel lane, avoiding collisions
with several vehicles which may be crossing the lane. When ownship reaches the end of the lane it traverses back
to the beginning of the lane, perhaps encountering contacts outside the intended context for testing. Likewise, the
contacts also repeatedly turn around to re-enter the travel lane as foils for testing ownship collision avoidance.

Wormbholes can be used in simulations like the one shown above in Figure 6, to create a variation
like the one shown in Figure 7. The orange test vehicle, when it reaches the end of the travel lane,
will enter the wormhole to instantly re-appear at the same end of the travel lane it came from.
The contacts in this example also do not need to turn around (and potentially take evasive action
between each other during the turns).
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Figure 7: Simulation with Wormhole: The single orange vehicle, ownship, traverses a travel lane, entering a
wormhole at the end of the lane, and re-emerging at the start of the lane. Contacts crossing the travel lane each enter
a wormhole on the destination side, to then immediately re-emerge at the originating side. All vehicles continuously
progress in one direction with no need for turning around.

9.2 Wormhole Configuration

A wormbhole is configured with a pair of polygons, one polygon is called the madrid_poly, and the
other is the weber poly. The cities of Madrid (Spain) and Weber (New Zealand), are Antipode
cities, lying exactly or nearly exactly at opposite coorindates on the globe.

The below three configuration lines declare the entry and exit polygons and the direction in which
the wormbhole is configure. The tag component allows multiple wormholes to be confgured, each
with unique tag.

wormhole = tag=one, madrid_poly={format=ellipse,x=80,y=-180,degs=0,major=160,minor=20,pts=20}
wormhole = tag=one, weber_poly={format=ellipse,x=80,y=0,degs=0,major=160,minor=20,pts=20}
wormhole = tag=one, connection=from_madrid

wormhole = tag=one, id_change=true

wormhole = tag=one, delay=0

The last two components, id_change=true and delay=3, are related to features not yet implement.
Three features are yet to be implemented:

e connection: Currently the wormhole only works in one declared direction. Bi-directional
wormholes will be implemented to support, for example, the bi-directional traffic shown in
Figure 7.

e id _change: Currently the vehicle name does not change as it passes through the wormhole. At
times it may be useful if the name does change, as a manner of testing the operation of the
contact manager which needs to handle memory management over many ephemeral contacts
over a long mission.

e delay: Currently a vehicle entering a wormhole will instantly appear on the other
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