uFldMessageHandler: Handling Incoming Node Messages
March 2022

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering
MIT, Cambridge MA 02139

1 Overview 1
2 Typical Application Topology 1
3 Inter-vehicle Messaging Sequence of Events 2
4 Building an Outgoing Node Message 2
5 Building an Outgoing Node Message - A Note of Caution 3
6 Event Flags 4
7 Configuration Parameters of uFldMessageHandler 4

7.1 Variables Published L 6

7.2 Variables Subscriptions oL 6
8 Command Line Usage of uFldMessageHandler 6
9 Terminal and AppCast Output 7

1 Overview

The uFldMessageHandler application handles incoming messages from a remote MOOSDB. In MOOS,
applications ”talk” to each other through the normal publish-subscribe means of a common MOOSDB.
Distinct robots or vehicles can also share information between vehicles and MOOSDBs using pShare.
But often we want to simulate inter-vehicle messaging where messages are sometimes dropped, and
messages are subject to inter-vehicle range limitations, band-width limitations, and limitations on
message frequency. To simulate this we use the uFldNodeComms and uFldMessageHandler apps in
concert. A message meant for another vehicle is packaged up in a format containing the message
itself and a bit of routing information. The receiving vehicle, running uFldVMessageHandler, unpacks
the message and injects the message to the local vehicle by posting to the local MOOSDB. The job
of routing and applying communications limitations is done by uFldNodeComms and is not the focus
here. The sole job of uFldMessageHandler is to do the message unpacking and posting of information,
while also keeping some stats for debugging if needed.

2 Typical Application Topology

In the uField Toolbox typical arrangement, messages arrive from a shoreside MOOS community
running uFldNodeComms and pShare as shown below in Figure 1.

uFldNodeComms

[pShare]

I Other Apps]

Shoreside

Vehicles

| uFldMessageHandier

Other Apps

Figure 1: Typical uFldMessageHandler Topology: A vehicle (node) sends a message to another vehicle by
wrapping the message content and addressee information in a single string sent to the shoreside. On the shoreside,
the uFldNodeComms application redirects the message to the appropriate vehicle(s). The message is received on
the vehicle by the uFldMessageHandler application which parses the MOOS variable and the variable value from the
string and posts the variable-value pair to the local MOOSDB.

pHelmIvP I I uFldMessageHandler

MOOSDB

pNedeReporter

Other Apps

3 Inter-vehicle Messaging Sequence of Events

The functionality of uFldMessageHandler may be paraphrased:

e A source vehicle alpha wishes to send a message to vehicle bravo of the form SPEED=2.5.
e A local message is posted on vehicle alpha of the form:

NODE_MESSAGE_LOCAL = src_node=alpha,dest_node=bravo,var_name=SPEED,double_val=2.5

e The above message is shared from alpha to the shoreside community using pShare.

e The message is received in the shoreside community as the variable NODE MESSAGE and handled
by uFldNodeComms and republished as NODE MESSAGE BRAVO.

e The message is then shared out to bravo using pShare arriving in vehicle bravo as NODE_MESSAGE.

e On vehicle bravo, the NODE_ MESSAGE is handled by uFldMessageHandler. The source variable
and value are parsed and a post to the local MOOSDB on bravo is made, SPEED=2.5

e A scope on the MOOSDB on bravo would show the source of the SPEED=2.5 posting to be
"uFldMessageHandler", and the auxiliary source would show "alpha"

4 Building an Outgoing Node Message

To construct an outgoing node message, there are two options. A message can be created through
normal string construction, for example:

string m_hostname; // previously set name of ownship

string m_dest_name; // previously set name of vehicle to communicate
string m_moos_varname; // previously set name of MOOS variable to send
string m_msg_contents; // previously set contents of message;

string msg;

msg += "src_node=" + m_hostname;
msg += ",dest_node=" + m_dest_name;
msg += ",var_name=" + m_moos_varname;

msg += ",string_val=" + m_msg_contents;

Notify ("NODE_MESSAGE_LOCAL", msg);

The above works, but may be prone to typos and may not be very ”future-proof” if the format for
inter-vehicle messaging changes. Another way to accomplish this is to use the NodeMessage class
which has the serializing and de-serializing steps implemented:

#include "NodeMessage.h" // In the lib_ufield library

string m_hostname; // previously set name of ownship

string m_dest_name; // previously set name of vehicle to communicate
string m_moos_varname; // previously set name of MOOS variable to send
string m_msg_contents; // previously set contents of message;

NodeMessage node_message;
node_message . setSourceNode (m_hostname) ;
node_message .setDestNode (m_dest_name) ;
node_message.setVarName (m_moos_varname) ;
node_message.setStringVal (m_msg_contents) ;

string msg = node_message.getSpec();

Notify ("NODE_MESSAGE_LOCAL", msg);

In the opposite direction, creating a NodeMessage instance from a string is done with:

#include "NodeMessageUtils.h" // In the lib_ufield library

string node_message_str; // previously set string containing a message

NodeMessage node_message = string2NodeMessage(node_message_str);

Note that the NodeMessage class is part of the 1ib_ufield library. The uFldMessageHandler app links
to this library, but if the above class is being used in a new app, to create a message, the 1ib_ufield
library needs to be linked as part of the build process of the new app.

5 Building an Outgoing Node Message - A Note of Caution

Note the structure of a node message, such as the one below, uses commas as component delimiters:

NODE_MESSAGE_LOCAL = src_node=alpha,dest_node=bravo,var_name=SPEED,double_val=2.5

Some care must be taken if the contents of the outgoing message is a string also containing commas,
such as:

NODE_MESSAGE_LOCAL = src_node=alpha,dest_node=bravo,var_name=INFO,string_val=good,bad,ugly

In this case the string contents should be wrapped in double quotes:

NODE_MESSAGE_LOCAL = src_node=alpha,dest_node=bravo,var_name=INFO,string_val="good,bad,ugly"

If the message is built using the NodeMessage class as in the second example in Section 4 above,
the double quotes are added automatically in the setStringVal() function if the argument is not
quoted and it contains a comma.

6 Event Flags

With the optional msg flag and bad msg flag, the user may configure events (postings) to be made
whenever an incoming message results in a successful posting, and whenever an incoming message
does not result in a posting.

The msg_flag is configured with variable-value pair, for example:
msg_flag = GOOD_POSTING=true

Likewise, the bad msg flag is configured with variable-value pair, for example:
bad msg flag = FAILED _POSTING=true

The value component of any posting may contain one or more of several supported macros. A macro
is expanded at the time of posting. Supported macros include:

e $[CTR]: The total of all received messages, regardless of whether a message resulted in a
posting.

e $[GO0OD_CTR]: The total of all received messages that resulted in a posting.

e $[BAD_CTR]: The total of all received messages that did not result in a posting.

Of course multiple postings may be configured. For example:

GOOD_POSTING=true
POSTING_COUNT=$ [CTR]

msg_flag

msg_flag

7 Configuration Parameters of uFldMessageHandler
The following parameters are defined for uFldMessageHandler.

Listing 7.1: Configuration parameters for uFldMessageHandler.

appcast_trunc msg: Number of characters allowed in the appcast report for each line
reporting a successful message. For example, Lines 19-24 in Listing
4. The default is 75. Setting it to zero means no truncating will be
applied.
strict_addressing: If true, only messages with a destination specified by dest_node, match-
ing the local community name are processed. Other messages with a
destination specified by a group designation are ignored. The default
is false.
msg flag: A variable-value pair posted upon receipt of a valid, un-rejected
incoming message and posting to the MOOSDB. Section 6.
bad msg flag: A variable-value pair posted upon receipt of a valid, but rejected
incoming message. Section 6.
aux_info: Adjust the content of the source auxilliary field. By default this is set
to "node". If set to "node+app", the source auxialliary field of posted
messages will contain both the sending node and the sending app.

An Example MOOS Configuration Block

Listing 2 shows an example MOOS configuration block produced from the following command line
invocation:

$ uFldMessageHandler --example or -e

Listing 7.2: Example configuration of the uFldMessageHandler application.

1

2 uFldMessageHandler Example MOOS Configuration

3

4

5 ProcessConfig = uFldMessageHandler

6 {

7 AppTick =4

8 CommsTick = 4

9

10 strict_addressing = false // the default
11 appcast_trunc_msg = 75 // default: the number of chars per
12 // line in the appcasting output
13
14 msg_flag = RETURN=true

15 bad_msg_flag = TOTAL_BAD=$[BAD_CTR]
16
17 aux_info = node+app // {node or node+app} Default is node
18
19 app_logging = true // {true or file} By default disabled
20 %

7.1 Variables Published

The primary output of uFldMessageHandler to the MOOSDB are the messages posted by parsing
incoming NODE_MESSAGE postings. A summary is also posted periodically to recap message handling
totals.

e APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility. Section 9.

e UMH_SUMMARY MSGS: A summary of total messages, valid messages and rejected messages handled
thus far. An example: UMH_SUMMARY _MSGS=total=3,valid=3,rejected=0

Further publications will be made if the app is configure with any msg flag or bad msg flag flags. For
example if configured with msg £1ag=POSTING=$[CTR], the variable POSTING will be posted each time
uFldMessageHhandler posts an incoming message. The value of POSTING will be the total number of
messages posted by uFldMessageHandler thus far.

7.2 Variables Subscriptions

The uFldMessageHandler application subscribes to the following MOOS variables:

e APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

e NODE_MESSAGE: Incoming node messages.

8 Command Line Usage of uFldMessageHandler

The uFldMessageHandler application is typically launched with pAntler, along with a group of other
vehicle modules. However, it may be launched separately from the command line. The command
line options may be shown by typing:

$ uFldMessageHandler --help or -h

Listing 8.3: Command line usage for the uFldlMessageHandler tool.

1

2 Usage: uFldMessageHandler file.moos [OPTIONS]

3

4

5 SYNOPSIS:

6 —_—— —_ _ -

7 The uFldMessageHandler tool is used for handling incoming

8 messages from other nodes. The message is a string that

9 contains the source and destination of the message as well as
0 the MOOS variable and value. This app simply posts to the

11 local MOOSDB the variable-value pair contents of the message.
12

13 Optionms:

14 --alias=<ProcessName>

15 Launch uFldMessageHandler with the given process name

16
17
18
19
10
21
22
23
24
25
26
27
28
29
30
31

9

The uFldMessageHandler application produces some useful information to the terminal and identical
content through appcasting. An example is shown in Listing 4 below. On line 2, the name of the
local community or vehicle name is listed on the left. On the right, "0/0(841) indicates there are no
configuration or run warnings, and the current iteration of uFldMessageHandler is 841. In lines 4-9,
general tallies are shown of received, invalid, and rejected messages. In lines 11-15, the tallies for
received messages sorted by source vehicle are shown. The variable-value columns reflect only the

rather than uFldMessageHandler.
--example, -e
Display example MOOS configuration block.
--help, -h
Display this help message.
—--interface, -i
Display MOOS publications and subscriptions.
--version,-v
Display the release version of uFldMessageHandler.
--web,-w
Open browser to:
https://oceanai.mit.edu/ivpman/apps/uFldMessageHandler

Note: If argv[2] does not otherwise match a known option,

then it will be interpreted as a run alias. This is
to support pAntler launching conventions.

Terminal and AppCast Output

last received message.

Listing 9.4: Example appcast and terminal output of uFldMessageHandler.

© 00 N O W N -

NNNNMNR R B B 2 B 2 e
B W NP O OOoWNO U WN - O

uFldMessageHandler gilda 0/0(841)

Overall Totals Summary

Total Received Valid: 5
Invalid: O
Rejected: 0O

Time since last Msg: 101.3

Per Source Node Summary

Source Total Elapsed Variable Value

henry 5 101.3 RETURN true

Last Few Messages: (oldest to newest)

Valid Mgs:
src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed
src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed
src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed
src_node=henry,dest_node=gilda,var_name=UPDATE_LOITER,string_val=speed
src_node=henry,dest_node=gilda,var_name=RETURN, string_val=true

25 Invalid Mgs:

26 NONE
27 Rejected Mgs:
28 NONE

The information group starting on line 17 shows the last five received valid, invalid and rejected
messages. Note that a rejected message may be rejected for being invalid, or if the destination field
doesn’t match, or if strict addressing is enabled and there is not a precise destination field match.

	Overview
	Typical Application Topology
	Inter-vehicle Messaging Sequence of Events
	Building an Outgoing Node Message
	Building an Outgoing Node Message - A Note of Caution
	Event Flags
	Configuration Parameters of uFldMessageHandler
	Variables Published
	Variables Subscriptions

	Command Line Usage of uFldMessageHandler
	Terminal and AppCast Output

