
pObstacleMgr: Managing Vehicle Belief State of
Obstacles
June 2020

Michael Benjamin, mikerb@mit.edu
Department of Mechanical Engineering

MIT, Cambridge MA 02139
project-pavlab/appdocs/app pobstaclemgr

1 Overview 2

2 Using the Obstacle Manager 2
2.1 Obstacle Manager Input Sources . 3

2.1.1 Tracked Feature Inputs . 3
2.1.2 Configuring Obstacles of Given Location and Size . 5
2.1.3 Obstacle Duration and Memory Management in the Obstacle Manager 6
2.1.4 Obstacle Manager Actions Upon Deletion of an Obstacle 6

2.2 Configuring the Helm to Handle Obstacle Manager Output 7

3 Implementation of the Obstacle Manager 8
3.1 Obstacles versus Contacts . 8
3.2 Drifting Obstacles . 8
3.3 Obstacle and Alert Management . 9

3.3.1 Alert Generation and The Alert Range . 9
3.3.2 Resolution of Alerts . 9
3.3.3 The Ignore Range . 10

4 Configuration Parameters for pObstacleMgr 10
4.1 An Example MOOS Configuration Block . 11

5 Publications and Subscriptions of pObstacleMgr 12
5.1 Variables Published by pObstacleMgr . 12
5.2 Variables Subscribed for by pObstacleMgr . 13

6 Terminal and AppCast Output 13

7 Simple Example Missions 14

1

1 Overview

The pObstacleMgr is designed to reason about obstacles and provide coordinated alerts and updates
to the helm for spawning and adjusting obstacle avoidance behaviors. The obstacle manager reasons
about given obstacles, with prior known locations, loaded at launch time and may include buoys,
rocky outcrops, bridge pylons and so on. It also reasons about sensed objects that may be derived
from LIDAR point clouds, or other sensor sources. The obstacle manager will manage both the
mission-loaded and dynamic incoming data to maintain a single list of obstacles. Depending on the
robot range to the obstacle, the obstacle manager will produce alerts for coordination with obstacle
avoidance behaviors. And in the case of dynamically sensed obstacles, it will continually update the
position and shape of the obstacle to previously spawned obstacle avoidance behaviors.

Figure 1: The Obstacle Manager: Obstacle information from a variety of sources is received by the obstacle
manager, which maintains a list of known obstacles. This is modified with time both in terms of updating the obstacle
locations as well as deleting stale obstacles. Continuous updates are posted and consumed by the helm to enable the
spawning of avoidance behaviors.

The obstacle manager exists and sits between the sensor stream and the helm for two reasons. (1)
This arrangement allows the helm to remain passively postured with respect to behavior spawning
of obstacle avoidance behaviors. The helm will spawn behaviors based on incoming events from
the obstacle manager. This is implemented in the helm in a manner that is consistent with any
other type of behavior or sensor stream. Nothing special was implemented in the helm to handle
obstacle information, other than the AvoidObstacle behavior. (2) The nature of the obstacle manager
may change over time as different sensors, information sources, or outlier rejection algorithms are
available. None of these changes will require a change to the helm or its behaviors.

2 Using the Obstacle Manager

To use the obstacle manager there are a few steps and considerations.

� The pObstacleMgr app must be run on the vehicle, by adding it to the Antler block for the
vehicle. An example configuration block is given in Section 4.1.

� Obstacle information must be fed to the obstacle manager from either one of three sources.
Either it (a) arrives from a sensor-based source as labeled points as decribed in Section 2.1.1,
or (b) arrives as convex polygon obstacle mail message in the variable GIVEN OBSTACLE, or (c)

2

the obstacle size and position information is provided at launch time from a set of obstacles
known a priori, listed in the configuration file with the parameter given obstacle, as described
in Section 2.1.2.

� The helm is configured to use an obstacle avoidance behavior in a templating mode, allowing
new behaviors to spawn based on output from the obstacle manager. See Section 2.2.

2.1 Obstacle Manager Input Sources

The obstacle manager may be populated with obstacle information in one of three methods as
shown below. Regardless of the source, all obstacles are maintained as a list of known obstacles by
the obstacle manager. And each time there is a change in shape of a known obstacle, an update is
posted to the obstacle manager consumers, e.g., the helm.

Figure 2: Obstacle Manager Input: Currently supported obstacle manager input comes from one of three sources.
(1) As individual LIDAR points with grouping information, (2) as polygon obstacles via incoming mail, typically
followed by updates for each obstacle, or (3) as polygon obstacles read from a mission configuration file.

In this section, the obstacle manager sources are described in more detail, along with how the
obstacle manager processess incoming information.

2.1.1 Tracked Feature Inputs

The obstacle manager is designed to work with one or more other applications producing tracked
features. These tracked features may be points generated by a LIDAR, or some other sensor. The
obstacle simulator, uFldObstacleSim, has a mode that supports generation of simulated LIDAR
points. The obstacle manager subscribes for the MOOS variable TRACKED FEATURE, of the form:

TRACKED_FEATURE = x=23.2,y=19.8,label=47

TRACKED_FEATURE = x=22.9,y=18.2,label=47

It is also assumed that the input will arrive with some grouping or clustering algorithm applied to
each feature, reflected in the label field in the examples above. The obstacle manager maintains
a database in the form of a mapping, keyed on the obstacle label, to a list of features. For each
obstacle only the N most recent features (points) are held. The obstacle manager may be configured

3

to ignore incoming features beyond a certain range to the robot. This helps ensure bounded memory
growth of the application as longer missions unfold.

For each cluster of points, the obstacle manager maintains a single convex polygon representing
each cluster. By default a convex hull polygon of each cluster is maintained as shown in Figure 3.

Figure 3: The Convex Hull Generator: Each stream of like-labeled points is a cluster from which the generator
will maintain a current convex hull. As points age-out, the convex hull may shrink or shift through space. This process
naturally accommodates both outlier points, and points associated with a slowly moving obstacle. In the right-hand
panel of the figure, the dark blue point shows a newly received point. The white point has aged-out. The lighter blue
points are not as old as the new point, but have not yet aged-out.

The stream of points, typically originating from a LIDAR, is presumed to be a constant update
stream of points as new information is generated from the LIDAR. The obstacle manager holds
enough points in memory to periodically generate a convex hull, but it also guards against unbounded
memory by allowing points to drop. A point will be dropped based on one of two criteria. The first
is a maximum total number of points held, with oldest points dropped as new points come in, i.e.,
first-in-first-out. The max amount is applied per-cluster. Currently there is no limit on the number
of clusters. This max limit is by default 20 points, but can be set with the max pts per cluster

parameter as shown below.

max_pts_per_cluster = 40 // default is 20

max_age_per_point = 10 // default is 20 seconds

The obstacle manager also will remove points from memory based on the age of the incoming point.
By default, the point will be dropped after 20 seconds. The TRACKED FEATURE message does not
contain a timestamp. The age of the point is based on the timestamp the obstacle manager applies
upon receipt. Dropping points based on age not only serves the purpose of bounding memory
growth, it also serves as a kind of outlier rejection. A spurious LIDAR point, that may have come
from a wave or some other non-obstacle phenomena, may cause a temporary growth of the convex
hull, but it will not last long. Dropping points based on age also allows moving obstacles to have a
convex hull that shifts with the motion of the obstacle. Each time the convex hull for an obstacle
changes shape or location, an update message is produced by the obstacle manager. If there is an
obstacle avoidance behavior currently in existence in the helm, tied to this obstacle, the behavior
will be immediately updated, likely resulting in a slight adjustment for the output on that particular
behavior.

An Alternative to Convex Hull Clustering

The convex hull is general and preferred when the object is not of a known size or geometry. In
certain cases when information about the object size is known a priori, the user may configure the

4

obstacle manager to associate a regular polygon of fixed size. The polygon is centered on the center
of mass for all points that have not aged-out, as shown in Figure 4. As before, the polygon will
shift with a moving obstacle as new points arrive and older points age-out.

Figure 4: The obstacle manager may also maintain a regular polygon of user configurable radius and number of
vertices, centered on the average of points for a given cluster.

To generate obstacle polygons in this manner the lasso parameter is used with the following options:

lasso = true // default is false

lasso_points = 6 // default is 6

lasso_radius = 5 // (meters) default is 5

The first parameter turns on the lasso option, and the following two set the radius and number of
vertices used in the regular polygon.

2.1.2 Configuring Obstacles of Given Location and Size

The obstacle manager may also be configured with obstacles, in polygon form, at given shape and
location. This can be done with a configuration parameter in the mission (.moos file), or through
incoming mail. In either case, the format is the same.

To configure given obstacles through incoming mail, the format is:

GIVEN_OBSTACLE = pts={109,-72:113,-76:113,-82:109,-86:103,-86:99},label=23

Providing given obstacles through MOOS messages is convenient when using another MOOS app to
generate obstacles, perhaps from different sensor input, or perhaps through simulation to stress test
the autonomy system. An obstacle is distinct by its label. For any given obstacle, the message may
simply arrive once, or it may be steadily updated depending on the source application. Updates are
applied immediately and passed on from the obstacle manager with a posting for any consumer of
information about this obstacle, e.g., an obstacle avoidance behavior in the helm.

To configure given obstacles in the mission file, the format is:

given_obstacle = pts={109,-72:113,-76:113,-82:109,-86:103,-86:99},label=23

Providing given obstacles in the mission file may be convenient if there are known obstacles such
as buoys, or other items that are consistent with an operation area. Such data can simply be just
loaded at mission time.

5

2.1.3 Obstacle Duration and Memory Management in the Obstacle Manager

The obstacle manager holds information about all known obstacles. A policy for obstacle deletion is
needed to guard against unbounded memory growth. In the case of obstacles tied to LIDAR points,
there is already a policy for points to age-out after a certain duration. The obstacle manager will
remove the obstacle from its list of obstacles when there are no longer any LIDAR points associated
with the obstacle. This will occur naturally as the vehicle moves away from an obstacle, beyond
sensor range. And if the LIDAR points were a false detection due to a sensor anomaly, or wave, the
flow of points related to this false detection will typically soon cease and the obstacle is deleted
from the obstacle manager memory.

The case of obstacles arriving from GIVEN OBSTACLE messages is different. The source of these
obstacles is not known by the obstacle manager, by design. By default, once the obstacle manager
has received information about an obstacle, it is held by the obstacle manager forever. When the
obstacle manager is consuming information in this manner, a duration is required as part of the
mail message. For example:

GIVEN_OBSTACLE = pts={109,-72:113,-76:113,-82:109,-86:103,-86:99},label=23,duration=5

By default, duration components are mandatory and cannot be any greater than 60 seconds. This
amount may be changed with the configuration parameter:

given_max_duration=30 // Default is 60 seconds

Or it may be disabled completely with:

given_max_duration = off

This compels the application generating the GIVEN OBSTACLE information to be mindful of obstacle
duration, typically updating the information for each obstacle at a rate that is faster than the posted
duration. This allows the obstacle manager to delete an obstacle in the absence of a recent update.

Currently the only application producing GIVEN OBSTACLE mail messages is the uFldObstacleSim

application. This method of feeding the obstacle manager may also be used by a future app that
has a better method of clustering LIDAR points than the simple convex hull algorithms described
earlier that are currently in use by the obstacle manager

2.1.4 Obstacle Manager Actions Upon Deletion of an Obstacle

The intended consumer of obstacle manager output is the helm. When a new obstacle is detected,
if it is within the configured range of the vehicle, a new obstacle avoidance behavior is spawned.
When the vehicle later goes beyond this range, the avoidance behavior will be deleted by the helm.

Normally, by the time the obstacle manager is about to delete a known obstacle, the helm has
probably already deleted the corresponding obstacle avoidance behavior. However, it is possible that

6

the obstacle became known to the obstacle manager due to spurious sensor/LIDAR data. Perhaps
this obstacle is very near the vehicle and caused the helm to spawn an obstacle avoidance behavior
for this phantom obstacle. In this case the flow of sensor information related to this false obstacle
may cease a very short time later, and the obstacle manager will quickly delete the obstacle from its
list of known obstacls. Yet the helm may still have the avoidance behavior associated with the false
obstacle, and would otherwise continue to have this behavior until the vehicle moves far enough
away. This is clearly not desirable since the avoidance behavior for that short-lived false obstacle
may constrain the vehicle motion in adverse ways. Instead, we want the vehicle behavior to be
removed when the obstacle manager removes the obstacle. For this reason, the obstacle manager
will publish the below posting whenever an obstacle is removed from its memory:

OBM_RESOLVED = 428

The helm obstacle avoidance behavior BHV AvoidObstacleV21 or newer, monitors for the above
postings. If it notes that the obstacle id for which it is associated has been resolved, the behavior
will put in motion the steps to self-delete immediately.

2.2 Configuring the Helm to Handle Obstacle Manager Output

The obstacle manager exists primarily to serve the helm, by posting notifications to the helm that
allow the helm to (a) spawn an obstacle avoidance behavior for a new obstacle, and (b) update a
previously spawned obstacle avoidance behavior with an updated location or shape of the obstacle.

Configuration on the helm side is straight-forward, requiring only a configuration block for the
obstacle avoidance behavior, similar to:

//--

Behavior=BHV_AvoidObstacleV21

{

name = avd_obstacles_

pwt = 500

condition = DEPLOY = true

templating = spawn

updates = OBSTACLE_ALERT

allowable_ttc = 5

buffer_dist = 3

pwt_outer_dist = 20

pwt_inner_dist = 10

completed_dist = 25

}

See the documentation for the obstacle avoidance behavior for more details on the above parameters.
The important point here is that upon startup of the helm, no obstacle avoidance behavior will
be spawned until the helm receives an alert about an obstacle. This alert comes via a posting to
the variable OBSTACLE ALERT. Until an alert arrives, this behavior exists in the helm as a template,
capable of spawning any number of behaviors, one for each obstacle.

7

When the helm starts, on behalf of the obstacle avoidance behavior template, the helm posts an
alert request:

OBM_ALERT_REQUEST = alert_range=20, update_var=OBSTACLE_ALERT

The alert request uses the value of the updates parameter and the pwt outer dist parameter to
construct the alert request. The alert range component of the alert request is automatically set
to match the pwt outer dist configuration parameter of the behavior. In the behavior, when the
obstacle is at, or beyond this range, the priority weight of the behavior becomes zero. This same
range value will inform the obstacle manager that (1) until the obstacle is closer than this distance,
postings to the OBSTACLE ALERT should not be made for this obstacle id, and (2) after the obstacle
has become farther than this distance, the same said postings should cease. After the vehicle has
opened range to the obstacle beyond the completed dist, the behavior will complete and will be
removed from them helm.

Note that if there are say ten instances of this behavior, for ten separate obstacles, they will all
receive their updates through the same OBSTACLE ALERT MOOS variable. Each posting, however, will
contain the name of the behavior. For example:

OBSTACLE_ALERT = name=avd_obstacles_ob_08#poly=pts={52.2,-32.2:53,-33.02:53,...

OBSTACLE_ALERT = name=avd_obstacles_ob_03#poly=pts={52.82,-115.86:50.64,...

OBSTACLE_ALERT = name=avd_obstacles_ob_02#poly=pts={72.07,-68.93:75.15,...

The helm will ensure the updates are only applied to the behavior that matches the name in the
update.

3 Implementation of the Obstacle Manager

3.1 Obstacles versus Contacts

The obstacle manager was designed to handle stationary obstacles like buoys or bridge pylons. To
handle moving obstacles such as other marine vessels, the IvP Helm uses a similar MOOS application
called a contact manager and a collision avoidance behavior based on COLREGS protocol. This
is outside the scope of this paper. Our convention is to use the term obstacle for objects that are
stationary or at best slowly drifting. Obstacles are handled by the obstacle manager and the Avoid
Obstacle behavior. We use the term contact for moving vessels. Contacts are handled by the contact
manager, and the Collision Avoidance behaviors.

3.2 Drifting Obstacles

The obstacle manager is equipped with the ability to handle drifting obstacles, e.g., a drifting
buoy. In effect, there is not much difference between a truly drifting object and an object with
slightly shifting sensor readings. Proper functioning of the obstacle manager depends on proper
configuration of the decay of sensed points. As the drifting obstacle moves, sensed points at the new
location will appear, and sensed points at older locations will become stale and disappear from the

8

obstacle manager memory. By default the number of sensed points is limited in size, per cluster key,
to 20 points. This can be changed with the parameter max pts per cluster. By default, the points
will decay and be removed from memory after 20 seconds. This can be changed wit the parameter
max age per point.

3.3 Obstacle and Alert Management

The obstacle manager by default will not generate any alerts unless another app has indicated that
it would like to receive alerts. This alert request comes in the form of a message:

OBM_ALERT_REQUEST = update_var=OBSTACLE_ALERT, alert_range=40, name=avd_obstacle

For the current release of the obstacle manager, an alert of a single configuration is supported.
Subsequent publications to OBM ALERT REQUEST, with different values for the alert variable or range,
will simply overwrite the previous setting.

3.3.1 Alert Generation and The Alert Range

The obstacle manager will generate alerts about an obstacle to the variable requested in the
OBM ALERT REQUEST message. The first time this alert variable is published, it can be regarded as
alert in the sense that the obstacle’s existence is new information for whomever is subscribing for
these alerts (typically the helm). A couple example postings are shown below.

OBSTACLE_ALERT = name=ob_4#poly=pts={48.7,-77.2:52.3,-80.8:52.3,-86:48.7,-89.6:43.5,\

-89.6:39.9,-86:39.9,-80.8:43.5,-77.2},label=ob_4

OBSTACLE_ALERT = name=ob_2#poly=pts={62.9,-48.7:67.1,-52.9:67.1,-58.9:62.9,-63.1:56.9,\

-63.1:52.7,-58.9:52.7,-52.9:56.9,-48.7},label=ob_2

Subsequent alert publications are essentially updates on the obstacle. These subsequent publications
are only made if the size or the position of the obstacle changes. For sensed obstacles derived from
point data or other dynamic data, alert updates are fairly frequent. For given static obstacles,
subsequent alert updates may never happen after the initial alert.
When the robot is beyond the alert range to an obstacle, the obstacle manager will no longer
generate alerts. Alert publications will resume as soon as the robot returns to within the alert
range. For the relatively static given obstacles, the obstacle manager takes care to re-publish an
alert for the obstacle when the robot returns within the alert range, even if the size or position
of the obstacle has not changed. A vehicle returning within the alert range always needs to be
re-alerted as if encountering this obstacle for the very first time.

3.3.2 Resolution of Alerts

The obstacle manager will generate a single alert for each obstacle, thereafter assuming the entity
that needed to know about the obstacle has been properly notified. For dynamic obstacles, alerts
will continue as the position or shape of the obstacle changes.

9

The helm may at some point want to delete the, e.g., obstacle avoidance, behavior that registered
for the alert, typically when the obstacle has been passed and has reached a range where it is no
longer a concern. In the case of the AvoidObstacle behavior, the behavior will be deleted when the
obstacle is beyond the completed dist range, and this range is tied to be equivalent to the requested
alert range.

3.3.3 The Ignore Range

For dynamic obstacles, receiving tracked feature point information, normally all such points are
received and processed, regardless of range. The ignore range parameter sets a distance, in meters,
beyond which an incoming point will be ignored. This can help reduce management of spurious
obstacles at obviously harmless ranges to ownship. By default this value is −1, meaning all points
are received and managed. In future releases this range may be automatically tied to the alert
range, and ignore regions will also be supported, to reject points on land or outside of the vehicle
operation area.

4 Configuration Parameters for pObstacleMgr

The following parameters are defined for pObstacleMgr. A more detailed description is provided in
other parts of this section. Parameters having default values are indicated.

Listing 4.1: Configuration Parameters for pObstacleMgr.

alert range: The range in meters, between ownship and an obstacle, that an alert will
be triggered. Section 3.3.1.

ignore range: The range in meters, between an incoming point (tracked feature) and
ownship, beyond which the point will be ignored.

lasso: If true, the polygon associated with each cluster will be firmly set to a
circular polygon of a set radius and set number of vertices. The default is
false. Section 2.1.1.

lasso points: The number of points used in the regular polygon representing the obstacle,
if the lasso parameter is set to true. The default is 6, a hexagon. Section
2.1.1.

lasso radius: The radius (distance to any vertex) used in the regular polygon representing
the obstacle, if the lasso parameter is set to true. The default is 5 meters.
Section 2.1.1.

max age per point: The maximum number of seconds that a point (tracked feature) will be
retained in memory. Beyond this number, points will be dropped. The
default is 20 seconds. Section 3.2.

max pts per cluster: The maximum number of points (tracked features) retained in memory per
cluster (points having the same label). Beyond this number, oldest points
will be dropped. The default is 20 points. Section 3.2.

point var: The name of the MOOS variable to looked for tracked features. The default
is TRACKED FEATURE. Section 2.1.1.

10

obstacles color: When the obstacle manager is rendering obstacles (post view polys is true),
this parameter will set the obstacle color. The default value is blue.

poly label thresh: When the number of obstacle polygons is greater than this parameter, the
view polylgons will be published with a label color of invisible, resulting
in less work for the pMarineViewer. The default is 25. This is solely to help
boost performance of pMarineViewer in extreme uses cases of very large
numbers of obstacles and high time warp, and possibly slower machines. It
does not affect the function of the obstacle manager in any other way.

poly shade thresh: When the number of obstacle polygons is greater than this parameter,
the view polylgons will be published with a shade (fill) color of invisible,
resulting in less work for the pMarineViewer. The default is 100. This is
solely to help boost performance of pMarineViewer in extreme uses cases of
very large numbers of obstacles and high time warp, and possibly slower
machines. It does not affect the function of the obstacle manager in any
other way.

poly vertex thresh: When the number of obstacle polygons is greater than this parameter, the
view polylgons will be published with a vertex size of zero, resulting in less
work for the pMarineViewer by only rendering the polygon edges, without
the vertices. The default is 150. This is solely to help boost performance
of pMarineViewer in extreme uses cases of very large numbers of obstacles
and high time warp, and possibly slower machines. It does not affect the
function of the obstacle manager in any other way.

post dist to polys: Legal values are true, false, or close. If true, the distance from ownship
to an obstacle is published for each obstacle, to the variable OBM DIST TO OBJ.
When set to close, these publications only occur when the obstacle is closer
than alert range. When false, these postings are turned of completely.
The default is close.

post view polys: When true, the obstacle polygons are published published by the obstacle
manager. Normally this is redundant since the obstacles are also published
by the obstacle avoidance behavior and the obstacle simulator. Legal values
are true and false. The default is false.

4.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ pBasicContactMgr --example or -e

This will show the output shown in Listing 2 below.

Listing 4.2: A Simple pObstacleMgr Example.

1 ===

2 pObstacleMgr Example MOOS Configuration

3 ===

4

11

5 ProcessConfig = pObstacleMgr

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 point_var = TRACKED_FEATURE // default is TRACKED_FEATURE

11

12 given_obstacle = pts={90.2,-80.4:...:85.4,-80.4},label=ob_23

13

14 post_dist_to_polys = true // true, false or (close)

15 post_view_polys = true // (true) or false or

16

17 max_pts_per_cluster = 20 // default is 20

18 max_age_per_point = 20 // (secs) default is 20

19

20 alert_range = 20 // (meters) default is 20

21 ignore_range = -1 // (meters) default is -1, (off)

22

23 lasso = true // default is false

24 lasso_points = 6 // default is 6

25 lasso_radius = 5 // (meters) default is 5

26

27 obstacles_color = color // default is blue

28

29 // To squeeze more viewer effic when large # of obstacles:

30 poly_label_thresh = 25 // Set label color=off if amt>25

31 poly_shade_thresh = 100 // Set shade color=off if amt>100

32 poly_vertex_thresh = 150 // Set vertex size=0 if amt>150

33 }

5 Publications and Subscriptions of pObstacleMgr

The interface for pObstacleMgr, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ pObstacleMgr --interface or -i

5.1 Variables Published by pObstacleMgr

The output of pObstacleMgr is:

� APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

� [ALERT VAR]: The obstacle manager will publish alerts through a variable specified in an alert
configuration, via the incoming OBM ALERT REQUEST message. See Section 3.3.1.

� VIEW POLYGON: The polygon representing the obstacle is posted in this variable. It is re-published
when/if the shape or location changes, or upon ownship approaching within range of the
obstacle.

� OBM DIST TO OBJ: For each object retained in the object manager’s memory, object manager

12

will continually post the distance from ownship to the obstacle, in meters. This posting can
disabled by setting the post dist to polys to false. By default it is enabled.

� OBM CONNECT: Upon successful launch of the obstacle manager, this variable is posted. It helps
coordinate with the obstacle simulator which may be running on the shoreside and may have
already published obstacle information. Upon receipt of this posting, the obstacle simulator
will refresh the postings.

� OBM MIN DIST EVER: The obstacle manager uses its knowlege of all obstacle locations and
ownship location and keeps track of the closest that an obstacle has ever come to ownship.
This minimum distance, and the id of the obstacle, are posted to this variable.

� OBM RESOLVED: When an obstacle is removed from the obstacle manager, a notice is posted
containing just the id of the removed obstacle. This may be used by the obstacle avoidance
behavior in the helm to let it know that this obstacle no longer exists. Section ??.

The obstacle manager will also publish to whatever MOOS variables are specified in the obstacle
alerts. See Section 3.3.

5.2 Variables Subscribed for by pObstacleMgr

The pObstacleMgr application will subscribe for the following four MOOS variables:

� APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

� GIVEN OBSTACLE: One of the obstacle manager input options is to receive the obstacle information
in the form of a convex polygon with a unique label. See Section 2.1.2.

� NAV X: Ownship’s current position in x coordinates.

� NAV Y: Ownship’s current position in y coordinates.

� OBM ALERT REQUEST: A message, typically from the obstacle avoidance behavior of the helm, to
configure the criteria and format for posting obstacle manager alerts. See Section 3.3.

� TRACKED FEATURE: One of the obstacle manager’s input options is to received simulated LIDAR
points. Each point is received as a message of this variable. See Section 2.1.2.

6 Terminal and AppCast Output

The pObstacleMgr application produces some useful information to the terminal on every iteration
of the application. An example is shown in Listing 3 below. This application is also appcast enabled,
meaning its reports are published to the MOOSDB and viewable from any uMAC application or
pMarineViewer. The counter on the end of line 2 is incremented on each iteration of pObstacleMgr,
and serves a bit as a heartbeat indicator. The "0/0" also on line 2 indicates there are no configuration
or run warnings detected.

The output in the below example comes from the s1 alpha obstacles mission.

Listing 6.3: Example terminal or appcast output for pObstacleMgr.

1 ===

2 pObstacleMgr alpha 0/0(238)

3 ===

13

4 Configuration (point handling):

5 point_var: TRACKED_FEATURE

6 max_pts_per_cluster: 50

7 max_age_per_point: 60

8 ignore_range: 40

9 Configuration (alerts):

10 alert_var: OBSTACLE_ALERT

11 alert_name: avoid_obstacle_

12 alert_range: 19

13 Configuration (lasso option):

14 lasso: true

15 lasso_points: 8

16 lasso_radius: 6

17 ==

18 State:

19 Nav Position: (61,-129.7)

20 Points Received: 58

21 Points Invalid: 0

22 Points Ignored: 147

23 Polygon obstacles: 4

24 Clusters: 4

25 Clusters released: 0

26

27 ObstacleKey Points HullSize Updates

28 ----------- ------ -------- -------

29 b 14 8 n/a

30 c 16 8 55

31 d 13 8 23

32 e 11 8 46

The first group of lines (4-16) show the configuration settings for pObstacleMgr. The status of
pObstacleMgr is shown in Lines 18-32.

7 Simple Example Missions

As of Release 19.8, there are two example missions using the obstacle manager.

� s1 alpha obstaclemgr: A single vehicle mission with obstacles generate by a stream of points.

� m2 berta obstacles: A two vehicle mission with obstacles given at fixed locations.

Differences between the obstacle manager and the contact manager:
- obstacles don’t have type or group
- Only one global alert range for all obstacles. Set in the config block but may be overridden by

a behavior when it registers wit the obstacle manager

14

	Overview
	Using the Obstacle Manager
	Obstacle Manager Input Sources
	Tracked Feature Inputs
	Configuring Obstacles of Given Location and Size
	Obstacle Duration and Memory Management in the Obstacle Manager
	Obstacle Manager Actions Upon Deletion of an Obstacle

	Configuring the Helm to Handle Obstacle Manager Output

	Implementation of the Obstacle Manager
	Obstacles versus Contacts
	Drifting Obstacles
	Obstacle and Alert Management
	Alert Generation and The Alert Range
	Resolution of Alerts
	The Ignore Range

	Configuration Parameters for pObstacleMgr
	An Example MOOS Configuration Block

	Publications and Subscriptions of pObstacleMgr
	Variables Published by pObstacleMgr
	Variables Subscribed for by pObstacleMgr

	Terminal and AppCast Output
	Simple Example Missions

