Launching MOOS Processes and Mission Scripts with
pAntler

Paul Newman, Oxford

1 Overview 1
2 Basic Syntax 2
3 Controlling Process Launch 2
3.1 Launching Processes in new console windows (or not) 2
3.2 Controlling Console Appearance i i it 2
3.3 Appearance Example e 3
3.4 Controlling Search Paths e 4
4 Passing Parameters to Launched Processes 4
4.1 The Two Default Parameters 4
4.2 Handling default parameters. e e 5
5 Running Multiple Instances of a Particular Process 5
5.1 Customising the Command Line Parameters Passed to a Launched Process 5
5.2 Specifying Additional Process Command Line Parameters 5
5.3 Inhibiting default parameters and Launching Arbitrary (non-MOOS) Processes 6
6 Distributing a Community over Multiple Machines 6
6.1 Motivation e e e 6
6.2 Antler Modes: Monach and Headless 7
7 Examples 8
7.1 Local Configurations o o i e e e e 9
7.2 Distributed Configuration e 11
8 Application note : I/O Redirection - Deployment 12

1 Overview

This section discusses how to use the application pAntler to launch multiple MOOS processes. This
is useful tool for starting up a set of processes all of which share a single configuration file. The
process pAntler is used to launch/create a MOOS community. It is simple to use and Post V7.0.2
very extensible. One of the ideas underlying MOOS is the one mission file one mission paradigm.
A single mission file contains all the information required to configure all the processes needed to
undertake the task (mission) in hand. (The pLogger application backs up each mission file so the
user can discern exactly what mission file was run at the time data was recorded - this is described
in the pLogger documentation). Note a collection of MOOS processes is commonly referred to as a
community.

2 Basic Syntax

pAntler provides a simple and compact way to start a MOOS mission. For example if the desired
mission file is Mission.moos then the following would launch the required processes/community for
the mission:

pAntler Mission.moos

It reads from its configuration block (which is declared as ProcessConfig=ANTLER) a list of process
names that will constitute the MOOS community. Each process to be launched is specfied with a
line with the general syntax:

Run = procname [@ LaunchConfiguration] [~ MOOSName] ‘

where LaunchConfiguration is an optional comma separated list of ”parameter=value” pairs which
collectively control how the process ”procname” (for example iGPS, or iRemote or MOOSDB) is launched.
Exactly what parameters can be specified is detailed later in the document. pAntler looks through
its entire configuration block and launches one process for every line which begins with RUN=. When
all processes have been launched pAntler waits for all of them to exit and then quits itself.

3 Controlling Process Launch

)

Immediately after the ”@” symbol in a RUN directive the user can supply a list of ” parameter=value’
pairs (comma separated) which control how the process in question should be launched. The
following subsections will explain the action of available parameters.

3.1 Launching Processes in new console windows (or not)

Run = MOOSDB @NewConsole = true

The optional NewConsole parameter specifies whether the named process should be launched in
a new window (an xterm in Unix or cmd-prompt in Win32 derived platforms). By default a new
console is launched.

3.2 Controlling Console Appearance

Post V7.0.2 releases allow a good deal of control over the appearance of the windows in which
processes will be launched. Especially so on the 'nix side of life. (The native win32 console has
less flexibility than the xterm. Deep apologies for Win32 users who may feel hard done by by the
asymmetry here.)

By specifying XConfig=<Name> or Win32Config=<Name> (depending on OS) the user can have
pAntler apply customisations to the new console in a process is launched. For example:

Run = MOOSDB @NewConsole = true,XConfig=DBXConsoleSettings, \
Win32Config=DBW32ConsoleSettings

will cause pAntler to search through its configuration block to find a line which begins with
DBXConsoleSettings =. or DBW32ConsoleSettings = — depending on OS). What is the left of the
equality determines the appearance of the new console and is a function of the host operating
system.

Console Appearance in Unix like OS’s

In unix derived operating systems the appearance string (referenced by ”XConfig”) is a comma
separated list of parameters that would be used to configure an xterm. So continuing by way of the
DBConsoleSettings example. If the DBConsoleSettings was specified (on its own line) as follows

DBXConsoleSettings = -bg,#FF0000,-fg,#FFFFFF,-geometry,80x12+2+00,+sb,-T,TheMOOSDB

then the MOOSDB would be launched in 12 rows by 80 columns window, white text on red at
the top left of teh screen. The string ”TheMOOSDB” would appear in the title. Note any xterm
configuration parameters can specified in this way. See the manual page for xterm for information
on the options allowed.

Console Appearance in Win32 OS’s

The only native WIN32 console options supported control the background color of the terminal
(text is always white). The LHS of the configuration line (referenced by "Win32Config”) can contain
a comma separated list of BACKGROUND_RED BACKGROUND_BLUE and BACKGROUND_GREEN. The following
would produce a white on red win32 console:

DBW32ConsoleSettings = BACKGROUND_RED

3.3 Appearance Example

Listing 3.1: An example Antler configuration block.

B et

2 // plogger configuration block

3 ProcessConfig = Antler

4 A

5 // look on system path

6 ExecutablePath = system

7

8 // launch a DB

9 Run = MOOSDB @NewConsole = true,XConfig=DBXConsoleSettings,Win32Config=DBW32ConsoleSettings
10

11 // xterm configuration for DB

12 DBXConsoleSettings = -bg, \#FF0000,-fg,\#FFFFFF,-geometry,80x12+2+00,+sb,-T,TheMOOSDB
13

14 // Win32 Configuration for DB

15 DBW32ConsoleSettings = BACKGROUND_RED

16 %

3.4 Controlling Search Paths

Post V7.0.2 pAntler offers extended functionality regarding specifying how executables are located
on the host file system. The paths which you wish the OS to use when searching for executable to
launch can be specified globally (a common path for all processes) or on a process by process basis.

Specifying Global Executable Paths
Adding line of the form

‘ ExecutablePath = path ‘

to Antler’s configuration block where path is a suitable path string, will make pAntler search in that
place for the exectables to launch. Not specifying this variable or setting path to "SYSTEM” will
cause Antler to relie on the host OS being able to locate the executable in its own executable paths.

Specifying Paths for an Individual Process

The global executable path (default ”system”) can be overridden for a particular process by providing
your prefered path in the "RUN” directive line. For example:

Run = pP1 @ NewConsole = true,path=/usr/strangeplace

will try to launch a process called "pP1” from a the directory ” /usr/strangeplace”. Such process
specific path directives overide any path set with ExecutablePath=... (Section 3.4).

4 Passing Parameters to Launched Processes

4.1 The Two Default Parameters

Unless told otherwise (see 5.3) each process launched is passed the mission file name as a command
line argument and also the name it should use to register with the MOOSDB. This means that by
default argv[1] of main is the name of the mission file currently in play (the one which pAntler is
itself reading) and argv[2] is the name of the process in to be launched (for example iGPS or pLogger).
By default pAntler assumes the name which a process will be registering with the MOOSDB with is
the name of the process itself. For example pLogger will register with the MOOSDB with the name
”pLogger”. However this can be changed using the M00SName syntax:

‘ Run = iGPS @NewConsole = true ~ GPS_A ‘

The above will cause the executable iGPS to be launched in a new console but (because iGPS
handles command line parameters appropriately) it will register with the M00SDB under the name of

"GPS_A”.

4.2 Handling default parameters

Of course just passing the MOOSName to a process doesn’t mean automagically that all MOOS
connections within that process will use this name. Supporting code must be provided.

5 Running Multiple Instances of a Particular Process

As already described in Section 4, the optional MOOSName parameter allows MOOSProcesses to
connect to the MO0SDB under a specified name. Why is this useful? Well for example a vehicle may
have two GPS instruments onboard. Now by default iGPS may register it existence with the M00SDB
under the name iGPS. This name is now taken and no other MOOSClient can use the name "iGPS” -
if they try the MOOSDB will not accept them into the fold. By using the syntax multiple instances
of the executable iGPS can be run but with each connecting to a the MOOSDB using a different name.
For example:

Run = iGPS @ NewConsole = true ~iGPSA
Run iGPS @ NewConsole = true ~“iGPSB

would launch two instances of iGPS registering under "iGPSA” and ”iGPSB” respectively. Note
there would need to be two GPS configuration blocks in the mission file — one for each and the
process names (RHS of ProcessConfig=) would be "iGPSA” and "iGPSB”

5.1 Customising the Command Line Parameters Passed to a Launched Process

But what if your beloved new process which you desire pAntler to launch requires extra command
line configuration? Or what if you don’t want pAntler to pass the Mission file name and the MOOS
name in a parameters? Fear not, just read on.

5.2 Specifying Additional Process Command Line Parameters

You can specify additional parameters which should be passed to a launched process using a syntax
similar to that used to specify console appearance (see Section 3.2) The trick is to specify the
name of a parameter string (R.H.S of a ExtraProcessParams=... in the process’s RUN directive line.
pAntler the rescans its configuration block looking for this named string which must be a comma
separated list of parameters. An example will make this blindingly obvious.

ProcessConfig = Antler

{
Run = iProcA @ NewConsole = true,path=/usr/local/bin, ExtraProcessParams=ProcAParams
ProcAParams =-o0,--verbose,--clever

}

The above would launch a process called iProch in a new console, (with default appearance as no
appearance string is specified see Section 3.2), and the process will be passed siz parameters at
launch time:

1. argv([0]: the executable image name.

argv[1]: the mission file name
argv[2]: the process’s MOOS name
argv[3]: -0

argv[4]: —verbose

o ot N

argv[5]: —clever

5.3 Inhibiting default parameters and Launching Arbitrary (non-MOOS) Pro-
cesses

If you want to launch a process with pAntler that has not been designed to handle the mission file
name an MOOS name as the first two parameters passed in the command line then it is possible to
tell pAntler not to pass these parameters. This is done using the InhibitM00SParams key word. For
example if you wanted to launch the executable top in its own window you would use a configuration
similar to:

‘ Run = top @ InhibitMOOSParams=true, NewConsole=true ‘

6 Distributing a Community over Multiple Machines

6.1 Motivation

Up until now we have implicitly assumed that all processes launched by a single instance of pAntler
reside on the same physical computer. Surely this is conflicts with the idea that any MOOS process
can run on any machine under any (common) OS? You're right it does and this issue has been
addressed in post V7.0.2 versions. Excellent. In the broadest of terms it is possible to have have one
Antler send a single mission file to a host of other Antlers (presumably but not necessarily sitting
on a different machine or OS) which they then process and launch processes locally. The idea is
that you still only need to edit one mission file to control a suite of processes running over any
number of physical machines. The operating paradigm is that once a suitably configured pAntler
has been started on a machine you need never kill or restart it. It stays alive patiently waiting for a
instructions. See Figure 1

lisal.robots.ox.ac.uk

..

Antler(lisal,9000,Lisa3)

e pLisa3_A
S— pLisa3_B

i_ __________ pusaz—c :' p Lisa 3_C

Spawned

Figure 1: In distributed mode, pAntler can be started in one of two ways. Here on the machine lisal.robots.ox.ac.uk
it is started in ” Top MOOS” mode with the name of a mission file on the command line. On the two other machines
(lisa2 and lisa3) Antler is started in headless mode receiving three command line parameters - the machine name on
which a MOOSDB can be found, the port that MOOSDB is serving on and an AntlerID name which in this case is simply
set to the machine name. When the "topMOOS” has spawned its processes it pushes the mission file to the DB. The
headless Antlers pick up this notification and run themselves from the newly received Mission file. Each headless
Antler only launches processes which have a Run directive line containing that particular instantiation of Antler’s ID.

6.2 Antler Modes: Monach and Headless

The idea is that pAntler can be run in one of two modes which we shall refer to as "headless” and
"monach” (as in Monach of the Glen - referring to the size antlers). These terms only have meaning
if the EnableDistributed flag is set to true in the Antler configuration block — ie when Antler is
being told to support distributed process control. If this flag is set and pAntler is launched in the
usual way:

./pAntler Mission.moos

then this will become a ”Monach”. Think of it as king/governing/top/controlling pAntler which
will take responsibility for distributing (via the M00sDB) the mission file to any other ”headless”
Antlers sitting on other machines. If however you start Antler with three command line parameters
as follows

./pAntler lisal.robots.ox.ac.uk 9000 lisa2

then Antler will launch in ”"headless” mode. Headless Antlers are bound to a single ”Monachs” via
a M00sDB (which will usually be lauched by the monach itself). The three parameters specify the
location and port of this MOOSDB and alls an AntlerID. This last parameter is a string which is used
by headless Antlers to figure out which Run directives they should execute. Consider the following
simple example:

ProcessConfig = Antler

{
EnableDistributed = true
Run = iProcA @ AntlerID = lisa2, NewConsole = true
Run = MOOSDB @ NewConsole=true

}

Note how iProcA has an AntlerID specified. Now if as above one started a headless pAntler
with "lisa2” as its Antler ID on machine ”B” and then started another instance of pAntler on
machine "B”. (A can equal B but whats the point?) but this time only specifying a mission
file (ie start pAntler as a "monach”) you would witness a MOOSDB coming up on machine A and
iProchA starting on machine B. If no AntlerID is specified in a run directive, it is assumed that the
monach is required to process the directive. Headless Antlers only process run directives possessing
an AntlerID matching their own. Each headless Antler writes the runtime received mission file
(stripped of comments and superfluous white space) to local disk (working directory) under the
name dynamic_<TIMESTAMP>.moos for future perusal.

Shutdown Behaviour

The default behaviour is for headless Antlers to shut down all their spawned processes when contact
is lost with the MOOSDB. If this is not the desired behaviour and you want launched processes to
carry on running simply add the directive "Ki110nDBDisconnect=false" to the configuration block.

ProcessConfig = Antler
{
EnableDistributed = true
KillOnDBDisconnect=false
Run = iProcA @ AntlerID = lisa2, NewConsole = true
Run = MOOSDB @ NewConsole=true
}

In any case as soon as a Mission file is received by a headless Antler any and all running processes
will be shutdown before processing the new Mission file.

7 Examples

If you enable the building of examples via the CMake build screen (See Figure 2) then the example
configurations in Sections 7.1 and 7.2 serve as a good starting point in experimenting with pAntler.
There are three examples processes supplied in the sibling code directory of the documentation:

1. pAnterTestAppA is nothing more than a dumb CMOOSApp that prints a string declared in its
configuration block

2. pAnterTestAppB is nothing more than a dumb CMOOSApp which takes more than the standard
two command line arguments, it uses these additional params to publish a variable to a
MOOSDB

3. pAnterTestAppC is not a CMOOSApp. its just a program which prints out its command line
arguments and spins in a do nothing loop.

Page 1 of 2

Users/phewnan/ L inksMO0SMOOSEin
Users/pnewman/ | inksMO0S/MO0SEin

: Build Documentation Examples
dit option CHMake 2.4 - patch 7

Pr i t generating
2 gdvance

Figure 2: selecting the building of examples in the MOOS build screen

7.1 Local Configurations

Listing 7.2: Example Configuration Blocks for Antler where all process are run on the same host
machine..

// Un-Comment/Comment the first line of each each example block
// to play with various Antler configurations

// Simplest possible example
// ProcessConfig = Antler
{
Run = MOOSDB @ NewConsole = true
Run = pAntlerTestAppA @ NewConsole = true
}

// Run two instances of pAntlerTestAppA under different names
// note two new configuration blocks are needed (Oxford and FenTech)
// ProcessConfig = Antler

Run = MOOSDB @ NewConsole = true
Run = pAntlerTestAppA @ NewConsole = true ~ Oxford
Run = pAntlerTestAppA @ NewConsole = true ~ FenTech

// Passing an additional two parameters to pTestAppB
// ProcessConfig = Antler
{
Run
Run

MOOSDB @ NewConsole = true
pAntlerTestAppA @ NewConsole = true

Run = pAntlerTestAppB @ ExtraProcessParams = BParams , NewConsole = true
BParams = CustomVar,ThisIsAString

// Specifying a default executable path and overloading it for MOOSBD

// ProcessConfig = Antler

{
ExecutablePath = C:/codescratch/M00S/MO0SBin/debug/q
Run = MOOSDB @ path=C:/codescratch/M0O0S/MO0SBin/debug, NewConsole = true
Run = qq @ NewConsole = true

}

// Passing three parameters to pTestAppC which is not expecting the first
// two parameters to be Mission File and MOOSName

// ProcessConfig = Antler

{

Run MOOSDB @ NewConsole = true

Run = pAntlerTestAppA @ NewConsole = true

Run = pAntlerTestAppB @ ExtraProcessParams = BParams , NewConsole = true
BParams = CustomVar,ThisIsAString

Run = pAntlerTestAppC @ ExtraProcessParams = CParams, InhibitMOOSParams=true, NewConsole

CParams = set,the,moos,loose,1,2,3,45.6

}

// Adding some colour to MOOSDB, pAntlerTestB and pAntlerTestC

// ProcessConfig = Antler

{
Run = MOOSDB @Win32Config=DBWin32,XConfig=DBX , NewConsole = true
DBX = -bg,#FF0000, -geometry, 80x40+200+300
DBWin32 = BACKGROUND_RED

Run = pAntlerTestAppA @ NewConsole = true

Run
NewConsole = true

BParams = CustomVar,ThisIsAString

BWin32 = BACKGROUND_GREEN,BACKGROUND_BLUE

10

pAntlerTestAppB @ Win32Config=BWin32,XConfig=BX, ExtraProcessParams = BParams, \

true

BX = -bg,#00FFFF, -geometry, 80x40+350+300

Run = pAntlerTestAppC @ Win32Config=CWin32,XConfig=CX,ExtraProcessParams = CParams, InhibitMOOSParams=true , Ne
CParams = set,the,moos,loose,1,2,3,45.6

CWin32 = BACKGROUND_RED,BACKGROUND_BLUE

CX = -bg,#FFOOFF, -geometry, 80x40+400+300

// Configuration for TestAppA - just looks for a string to print
ProcessConfig = pAntlerTestAppA
{
PrintThis = SetTheMOOSLoose
}

// Configuration for pTestAppB - nothing but it expects a third and fourth
// command line tell it what to publish...

// ProcessConfig = pAntlerTestAppB

{

// Configuration for FenTech (which is actually and instantiation of
// pAntlerTestAppA) - just looks for a string to print
ProcessConfig = FenTech
{
PrintThis = ThisIsTestAppAAsFenTech
}

// Configuration for Oxford (which is actually an instantiation of
// pAntlerTestAppA) - just looks for a string to print
ProcessConfig = Oxford

{
PrintThis = ThisIsTestAppAAsOxford

}

7.2 Distributed Configuration

Listing 7.3: Example Configuration Blocks for Antler where all processes are run on different hosts.

1 // If you are really running this on different hosts make sure you

2 // set the server hostname below if you are simply testing how to run
3 // multipls instances of MOOS leaving it as local host is just fine

4

5 ServerHost = localhost

6 ServerPort = 9000

7

8 // Adding some colour to MOOSDB, pAntlerTestB and pAntlerTestC

9 ProcessConfig = Antler

10 {

11 EnableDistributed = true

12 Run = MOOSDB @ Win32Config=DBWin32,XConfig=DBX , NewConsole=true
13 DBX = -bg,#FF0000, -geometry, 80x40+200+300

14 DBWin32 = BACKGROUND_RED

11

15

16 Run = pAntlerTestAppA @ AntlerID=jupiter, NewConsole=true

17

18 Run = pAntlerTestAppB @ AntlerID=neptune, Win32Config=BWin32, \
19 XConfig=BX, ExtraProcessParams=BParams , NewConsole=true

20 BParams = CustomVar, ThisIsAString
21 BWin32 = BACKGROUND_GREEN,BACKGROUND_BLUE

22 BX = -bg,#00FFFF, -geometry, 80x40+350+300

23

24 Run = pAntlerTestAppC @ Win32Config=CWin32, XConfig=CX, \

25 ExtraProcessParams=CParams, InhibitMOOSParams=true , NewConsole=true

26 CParams = set, the, moos, loose, 1, 2, 3, 45.6

27 CWin32 = BACKGROUND_RED,BACKGROUND_BLUE

28 CcX = -bg, #FFOOFF, -geometry, 80x40+400+300

29 }

30

31 // Configuration for TestAppA - just looks for a string to print
32 ProcessConfig = pAntlerTestAppA

33 {

34 PrintThis = SetTheMOOSLoose

35 }

36

37 // Configuration for pTestAppB - No params here, but it expects
38 // a third and fourth command line argument, a variable and string.
39 ProcessConfig = pAntlerTestAppB

40 |

41 }

42

43 // Configuration for pTestAppC - No params here, but it expects
44 // eight additional command line arguments

45 ProcessConfig = pAntlerTestAppB

46 |

47 '}

8 Application note : I/O Redirection - Deployment

Frequently iRemote, displayed on a remote machine, will be the only interface a user has to the
MOOS community. We must ask the question - ”where does all the 10 from other processes
go to prevent I1/O blocking?”. One answer to this is I/O redirection and backgrounding MOOS
processes - a simple task in unix derived systems (Some OS are good for development others for
running.) Running pAntler in the following fashion followed by a manual start up of iRemote is the
recommended way of running MOOS in the field on a ‘nix platform.

./pAntler mission.moos > ptyZO > /dev/null &
./iRemote mission.moos

This redirection of iRemote is encapsulated in the moosbg script included with the MOOS
installations. In the case of an AUV the interface can only be reached through in-air wireless
communications, which will clearly disappear when the vehicle submerges but will gracefully
re-connect when surfacing (not so easy to do with a PPP or similar link).

12

	Overview
	Basic Syntax
	Controlling Process Launch
	Launching Processes in new console windows (or not)
	Controlling Console Appearance
	Appearance Example
	Controlling Search Paths

	Passing Parameters to Launched Processes
	The Two Default Parameters
	Handling default parameters

	Running Multiple Instances of a Particular Process
	Customising the Command Line Parameters Passed to a Launched Process
	Specifying Additional Process Command Line Parameters
	Inhibiting default parameters and Launching Arbitrary (non-MOOS) Processes

	Distributing a Community over Multiple Machines
	Motivation
	Antler Modes: Monach and Headless

	Examples
	Local Configurations
	Distributed Configuration

	Application note : I/O Redirection - Deployment

