
uSpeechRec: Julius Speech Recognition
Spring 2019

Michael Novitzky, novitzky@mit.edu
Department of Mechanical Engineering, CSAIL

MIT, Cambridge MA 02139

1 uSpeechRec: Julius Speech Recognition 1

2 Building uSpeechRec 2
2.1 MAC OS X . 2
2.2 Ubuntu . 2
2.3 Build . 2

3 Using uSpeechRec 3
3.1 Typical Module Topology . 3
3.2 Pausing uSpeechRec . 4
3.3 Starting uSpeechRec in a Paused State . 4
3.4 Interpreting the Outputs . 4
3.5 The SPEECH RECOGNITION SENTENCE Format . 4

4 Adding New Words To Your Grammar 6

5 Modifying Grammar 7

6 Configuration Parameters of uSpeechRec 8
6.1 An Example MOOS Configuration Block . 8

7 Publications and Subscriptions for uSpeechRec 9
7.1 Variables Published by uSpeechRec . 9
7.2 Variables Subscribed for by uSpeechRec . 9
7.3 Command Line Usage of uSpeechRec . 9

8 Terminal and AppCast Output 10

1 uSpeechRec: Julius Speech Recognition

The uSpeechRec application, now in version 3.0, is a module for using the Open-Source Large
Vocabulary CSR Engine Julius. It is an interface between Julius and the middleware MOOS.
By using uSpeechRec along with a dialogmanager, such as uDialogManager, a person can use a
microphone and simple speech to interact with other MOOS applications.
Key parts needed for uSpeechRec are:

1. Julius Configuration File: A configuration file, such as Alpha.jconf, specifies important options
for running Julius. Many modifications can be made through the configuration file. By
default, the configuration file specifies the use of a microphone and is setup for the VoxForge
configuration including their acoustic model.

1

2. Acoustic Model Files: An acoustic model represents the relationship between an audio signal
and the phonemes that make up speech. Distributed with uSpeechRec is an English version of
the acoustic model provided by VoxForge.net.

3. Grammar: A grammar specification in speech recognition is a set of word patterns and informs
the speech recognition system what to expect a human to say. A sample grammar from
VoxForge.net has been modified for the purposes of uSpeechRec. Explanations on how to
modify and create new grammars are described below.

2 Building uSpeechRec

Prior to building uSpeechRec you must install some dependencies.

2.1 MAC OS X

We recommend using MacPorts to install dependencies on MAC OS X. You can add the packages
for Julius and portaudio:

sudo port install julius portaudio

You MUST then add to either your .bash profile, .bashrc, or .profile the corresponding library path:

export LIBRARY_PATH=/opt/local/lib

It is necessary because unfortunately MacPorts is not properly adding the library path as of this
writing.

2.2 Ubuntu

In order to install the Ubuntu dependencies simply enter into the command line:

$ sudo apt-get install julius julius-dev libportaudio-dev libpulse-dev libasound2-dev

2.3 Build

To build on Linux and Apple platforms, execute the build script within this directory:

$./build.sh

To build without using the supplied script, execute the following commands within this directory:

2

$ mkdir -p build

$ cd build

$ cmake ../

$ make

$ cd ..

3 Using uSpeechRec

Typical use of uSpeechRec has it situated in a community in which a human will interact with it
using speech. In addition to uSpeechRec another application in the same community must interpret
the sentences from uSpeechRec and deterimine how it should interact with the system.

3.1 Typical Module Topology

The typical module topology is shown in Figure 1 below. The uSpeechRec is situated in a com-
munity in which speech will be used as a form of interaction. It is typically run alongside
uDialogManager and iSay for an interactive experience. The uSpeechRec application subscribes
to the variables SPEECH ACTIVE and SPEECH PAUSE which perform the same function of muting the
microphone input which mimics a paused state. The uSpeechRec publishes the most likely sentence
to SPEECH RECOGNITION SENTENCE along with the confidence scores to SPEECH RECOGNITION SCORE. If
any errors in speech recognition occur, uSpeechRec publishes to SPEECH RECOGNITION ERROR.

Figure 1: Typical uSpeechRec Topology: This module runs in any community in which one would like to
use Speech Recognition. It is typically used with the applications uDialogManager and iSay for an interactive
experience.

3

3.2 Pausing uSpeechRec

There may be situations in which you want to pause uSpeechRec. Pausing is accomplished by
posting TRUE to the MOOSDB variable SPEECH PAUSE. uSpeechRec will remain paused until FALSE is
posted SPEECH PAUSE. The status of SPEECH PAUSE can be seen through AppCasting. Alternatively,
by posting the opposite variables to SPEECH ACTIVE will gain the same effect as pausing.

3.3 Starting uSpeechRec in a Paused State

There may be situations in which you want to have uSpeechRec start in a paused state. Starting
uSpeechRec in a paused state is accomplished by inserting StartState = Paused in the .moos file for
uSpeechRec. In order to have recognition start then a posting of FALSE needs to be posted to the
MOOSDB variable SPEECH PAUSE.

3.4 Interpreting the Outputs

The most likely output speech recognition sentence by Julius is published to the SPEECH RECOGNITION SENTENCE.
However, just because it is the most likely sentence based on the acoustic model, vocabulary, and
grammar files, does not mean that is confident that is the correct sentence. To get further confidence,
starting with uSpeechRec version 3.0, it is best to look at the SPEECH RECOGNITION SCORE. Here is an
example SPEECH RECOGNITION SCORE

sentence= BLUE THREE ATTACK, confidencescores=1:0.999692:0.912241:0.73853:1, score1=
-12884.4

The sentence section is a repetition of the most likely recognized sentence. The confidencescores
section includes the confidence for each word separated by ’:’. The first and last numbers reflect
the starting silence and ending silence - which is typically 1. The numbers in between are the
confidence, (0.0-1.0], that Julius has that the word is the correct word. This output can be leveraged
by uDialogManager to reject a sentence based on a word confidence threshold.

3.5 The SPEECH RECOGNITION SENTENCE Format

The available set of sentences that uSpeechRec will recognize is tied to the .grammar file and the
.voca file. The .grammar file describes the structure of the available sentences. The .voca file
describes the vocabulary that comprise the sentences.
Let’s take a simple .grammar file:

S : NS_B SENT NS_E

SENT: NAME COMMAND

SENT: ACK

Here we see a simple grammar specification starting with the first line:

S : NS_B SENT NS_E

Where S is the root and it is defined with NS B which corresponds to silence with a SENT or sentence

4

and terminated with NS E which is also silence. In the following line SENT is defined:

SENT: NAME COMMAND

A possible definition for SENT or sentence is created with the terms NAME followed by COMMAND. A
second definition for SENT is created on the following line:

SENT: ACK

in which SENT or sentence is defined as ACK.
The words such as NAME, COMMAND, and ACK are defined in the .voca file. The .voca file uses the

syntax % followed by grammar construct such as NAME. Below NAME are the text such as ARNOLD

followed by the phonemes such as aa r n ah l d. See the following example:

% NS_B

<s> sil

% NS_E

</s> sil

% NAME

ARNOLD aa r n ah l d

BETTY b eh t iy

CHARLIE ch aa r l iy

TEAM t iy m

%COMMAND

RETURN r ih t er n

DEPLOY d ih p l oy

FOLLOW f aa l ow

STATION s t ey sh ah n

%ACK

YES y eh s

NO n ow

The configuration file for Julius has the .jconf extension. As an example we include the configuration
block suggested by VoxForge.org:

5

VoxForge configurations:

-input mic # live microphone

-dfa grammar/alpha.dfa

-v grammar/alpha.dict

-h acoustic_model_files/hmmdefs

-hlist acoustic_model_files/tiedlist

-spmodel "sp" # HMM model name

-multipath

-gprune safe

-iwcd1 max

-iwsppenalty -70.0 # transition penalty for the appended sp models

-smpFreq 16000 # sampling rate (Hz)

-iwsp # append a skippable sp model at all word ends

-penalty1 5.0

-penalty2 20.0

-b2 200 # beam width on 2nd pass (#words)

-sb 200.0 # score beam envelope threshold

-n 1

!!!!!!

The key parameters describe where the grammar files are found and the acoustic model can be
found. In this example the two grammar file parameters are:

-dfa grammar/alpha.dfa

-v grammar/alpha.dict

The following parameters describe where the acoutic files are to be found:

-h acoustic_model_files/hmmdefs

-hlist acoustic_model_files/tiedlist

The rest of the parameters in the VoxForge.org .jconf file describe the model parameters which are
beyond the scope of this document.

4 Adding New Words To Your Grammar

Because we are using the VoxForge.org dictionary, we are limited to the words and phones contained
within. This was the dictionary used to train the acoustic model. However, if there are words within
the dictionary you wish to use it is relatively a simple process to add them to the vocabulary list.
Let’s say you would like to add the word STATUS to your list of commands. That way you can ping a
robot to get it’s status by saying ARNOLD STATUS. First, we look into the grammar folder and search
through the file VoxForgeDict.txt for the word STATUS. It seems that we have found two entries
with the first being:

STATUS [STATUS] s t ae t ah s

6

In this example we are running alpha.voca as our vocabulary file. We will add just the english text
STATUS and phones s t ae t ah s to the last entry under %COMMAND.

% COMMAND

RETURN r ih t er n

DEPLOY d ih p l oy

FOLLOW f aa l ow

STATION s t ey sh ah n

STATUS s t ae t ah s

But we are not finished just yet. We must recompile the Julius grammar called alpha using the Perl
script mkdfa.pl.

$ mkdfa.pl alpha

If this worked properly, mkdfa.pl converted the .grammar and .voca file into Julius specific formats
of .dfa and .dict files. Now, when we run the mission we can use the phrase NAME COMMAND with
ARNOLD STATUS as an example.

5 Modifying Grammar

Let’s say that we have exhausted the original sentence structure in the alpha.grammar file. For
example, we really enjoyed using ARNOLD FOLLOW to mean that the robot ARNOLD should FOLLOW me.
However, this is a limited vocabulary because we would like to specify an object to some of our
commands. For example, I would like for ARNOLD to FOLLOW another robot such as BETTY. At the
moment, our alpha.grammar does not allow for such a sentence. Let’s add this powerful grammar to
it! Our original alpha.grammar specifies two sentence formats.

S : NS_B SENT NS_E

SENT: NAME COMMAND

SENT: ACK

Let’s add a third sentence format by inserting the following line:

SENT: NAME COMMAND NAME

This sentence format allows us to specify any name in our .voca file followed by any COMMAND with
the object NAME. Our final .grammar file will look like:

7

S : NS_B SENT NS_E

SENT: NAME COMMAND NAME

SENT: NAME COMMAND

SENT: ACK

We will need to convert this updated .grammar file into something Julius can use.

$ mkdfa.pl alpha

The Perl script mkdfa.pl has taken a .grammar file and a .voca file and converted them into Julius
formats of .dfa and .dict. Now when running uSpeechRec, a user can use the additional sentence
NAME COMMAND NAME such as ARNOLD FOLLOW BETTY. It is up to the user to determine how this new
sentence will be used in a second app such as uDialogManager.

6 Configuration Parameters of uSpeechRec

The following parameter is defined for uSpeechRec. A more detailed description is provided in other
parts of this section. Parameters having default values are indicated so.

Listing 6.1: Configuration Parameters for uSpeechRec.

JuliusConf: Names the file for the Julius configuration. For example "JuliusConf =

Alpha.jconf". See Section 3.5.

StartState: Decides the Paused state that uSpeechRec will start in. Options are ’Active’ or
’Paused’, see Section 3.3.

6.1 An Example MOOS Configuration Block

To see an example MOOS configuration block, enter the following from the command-line:

$ uSpeechRec --example or -e

This will show the output shown in Listing 2 below.

Listing 6.2: Example configuration of the uSpeechRec application.

1 ===

2 uSpeechRec Example MOOS Configuration

3 ===

4

5 ProcessConfig = uSpeechRec

6 {

7 AppTick = 4

8 CommsTick = 4

9

10 JuliusConf = Alpha.jconf

8

11 //StartState default is ’Active’

12 //Can be set to ’Paused’. Must then be unpaused

13 //by posting to the MOOSDB SPEECH_PAUSE=FALSE

14 StartState = Paused

15 }

7 Publications and Subscriptions for uSpeechRec

The interface for uSpeechRec, in terms of publications and subscriptions, is described below. This
same information may also be obtained from the terminal with:

$ uSpeechRec --interface or -i

7.1 Variables Published by uSpeechRec

• APPCAST: Contains an appcast report identical to the terminal output. Appcasts are posted
only after an appcast request is received from an appcast viewing utility.

• SPEECH RECOGNITION SENTENCE: The most likely sentence heard by the Julius Speech Recognition
Engine. Section 3.5.

• SPEECH RECOGNITION SCORE: The most likely sentence heard by the Julius Speech Recognition
Engine and the confidence scores in each word. Section 3.5.

• SPEECH RECOGNITION ERROR: If Julius Speech Recognition Engine does not produce a result then
an error is output here..

7.2 Variables Subscribed for by uSpeechRec

The uSpeechRec application will subscribe for the following four MOOS variables:

• APPCAST REQ: A request to generate and post a new apppcast report, with reporting criteria,
and expiration.

• SPEECH PAUSE: A value of TRUE will pause uSpeechRec while a value of FALSE will unpause/start
uSpeechRec.

• SPEECH ACTIVE: Used as an alternative to SPEECH PAUSE. A value of TRUE will unpause uSpeechRec

while a value of FALSE will pause uSpeechRec.

7.3 Command Line Usage of uSpeechRec

The uSpeechRec application is typically launched as a part of a batch of processes by pAntler, but
may also be launched from the command line by the user. To see command-line options enter the
following from the command-line:

$ uSpeechRec --help or -h

This will show the output shown in Listing 3 below.

Listing 7.3: Command line usage for uSpeechRec.

9

1 ==

2 Usage: uSpeechRec file.moos [OPTIONS]

3 ==

4

5 Options:

6 --alias=<ProcessName>

7 Launch uFldHazardMetric with the given process name.

8 --example, -e

9 Display example MOOS configuration block.

10 --help, -h

11 Display this help message.

12 --interface, -i

13 Display MOOS publications and subscriptions.

14 --version,-v

15 Display release version of uSpeechRec.

8 Terminal and AppCast Output

Listing 8.4: Example uSpeechRec console output.

1 ===

2 uSpeechRec mokai 0/0(682)

3 ===

4 ==

5 JuliusConf = Alpha.jconf

6 Recognizer Paused

7 ===

8 Most Recent Events (2)

9 ===

10 sentence: BLUE THREE ATTACK, confidencescores: 1 0.999692 0.912241 0.73853 1, score1: -12884.4

11 sentence: NO, confidencescores: 1 0.368944 1, score1: -10499.8

Line 2 includes the name or alias that uSpeechRec is using followed by the community in which it
resides. The final set of numbers on line 2 include the number of appcasts that have been published.
Line 5 includes the .jconf file being used by the Julius Speech Recognition Engine for configuration.
Line 6 presents whether the speech recognition provided by Julius is ’Paused’ or ’Active’. During
normal operations Lines 10-11 provide a history of the latest sentences recognized by the Julius
Open-Source Recognition Engine. Immediately following the most likely recognized sentence is
the negative log-likelihood provided by Julius. If there is a configuration or runtime warning then
Line 5 would be replaced with .jconf file issues or the possible situation when Julius could not be
initialized.

10

	uSpeechRec: Julius Speech Recognition
	Building uSpeechRec
	MAC OS X
	Ubuntu
	Build

	Using uSpeechRec
	Typical Module Topology
	Pausing uSpeechRec
	Starting uSpeechRec in a Paused State
	Interpreting the Outputs
	The SPEECH_RECOGNITION_SENTENCE Format

	Adding New Words To Your Grammar
	Modifying Grammar
	Configuration Parameters of uSpeechRec
	An Example MOOS Configuration Block

	Publications and Subscriptions for uSpeechRec
	Variables Published by uSpeechRec
	Variables Subscribed for by uSpeechRec
	Command Line Usage of uSpeechRec

	Terminal and AppCast Output

