
Introduction to Programming with MOOS

Paul Newman

June 4, 2009

Abstract

This document is intended to bootstrap the process of using the MOOS
communications libraries. It is aimed at programmers who are competent
in C++. All the code in this document is supplied in full in the “code”
sibling directory of this document.

1

Contents

1 Building a New Application using MOOS 3

1.1 Derivation from CMOOSApp . 3

2 A First Worked Example 3

2.1 First Example Code Listing . 4

3 The Important CMOOSApp Virtual Functions 6

3.1 Iterate . 7
3.2 OnNewMail . 7
3.3 OnConnectToServer . 7
3.4 OnDisconnectFromServer . 8
3.5 OnStartUp . 8

4 A Second Worked Example - Handling Mail 8

4.1 Registering for Mail . 12
4.1.1 Where and When Should the Registrations Occur? 12

4.2 Parsing Messages . 13
4.3 Using ::PeekMail for Sorting Mail 13
4.4 Checking for Stale Messages . 13
4.5 Parsing Strings . 14
4.6 Testing The New Application . 15

4.6.1 Testing with uMS . 15
4.7 Testing Ex2 with Another Application 15

5 Message Content — CMOOSMsg 18

6 Important CMOOSApp Methods 19

6.1 Reading Configurations From File 19
6.2 Parsing Configuration Blocks . 20
6.3 The Role of AppTick and CommsTick 23

7 Using the CMOOSVariables with CMOOSApp 25

8 Getting By Without MOOSApp 27

9 Other Bells and Whistles 27

9.1 Process Status Summaries . 27
9.2 Automatic Handling of <PROCESSNAME> CMD Messages 28

10 MOOSGenLib Functions 28

2

1 Building a New Application using MOOS

We shall get straight to the matter in hand — how to use the MOOS/Core
directory to build a new application which takes advantage of the MOOS com-
munications layer. To do this, it makes sense to quickly introduce an important
class provided by the MOOS Communications libraries, namely CMOOSApp .

1.1 Derivation from CMOOSApp

MOOS provides a class called CMOOSApp which makes writing a program
using MOOS a simple affair. Beneath the hood of the CMOOSApp class is a
loop which repetitively calls a function called Iterate() which by default
does nothing. One of our jobs as writers of a new MOOS-enabled application
is to flesh this function out with the code that makes the application do what
we want1. Behind the scenes this uber-loop in CMOOSApp 2 is also checking to
see if new data has been delivered to the application. If it has, another virtual
function, OnNewMail , is called — this is the spot to write code to process the
newly delivered data.

We’ll cover this in more detail later, but for now it makes sense to get
stuck into an example. But before we do, look at Figure 1 which summarises
graphically the basic flow of execution in an application which makes use of
the CMOOSApp class (by deriving a new class from it) and has just called the
CMOOSApp::Run method.

2 A First Worked Example

So let us use CMOOSApp to build an new application. Perhaps the simplest
procedure is as follows:

1. Make a new ”main.cpp”.

2. Make a new class derived class from CMOOSApp.

3. In main() make an instance of this class.

4. Call ::Run() on this object.

5. As needs dictate overload the following virtual functions:

::Iterate() a function in which the application will do its main pro-
cessing; see Section 3.1.

::OnNewMail() a function called when new mail (data) has arrived; see
Section 3.2

::OnConnectToServer() called when a connection has been made to the
MOOS database; see Section 3.3

::OnStartup() called when the application starts up; see Section 3.5

1Don’t write a forever loop in Iterate() - allow CMOOSApp to call this function for you
time and time again.

2You can find the loop in the CMOOSApp::Run method.

3

Figure 1: The flow of execution once ::Run has been called on a class derived
from CMOOSApp . The “scrolls” indicate where we (as users of the functionality
of CMOOSApp) will be writing new code that implements whatever it is we want
our application (program) to do.

Listings 1, 2 and 3 show the most skinny of conceivable MOOS applications
using the functionality of CMOOSApp as a base class to a newly derived class
CSimpleApp . My advice to you is to not proceed beyond this point until
you can get this code to compile and link. See the document on Building and
Linking for more details on building MOOS projects.

2.1 First Example Code Listing

Listing 1: Simplest Application - main.cpp

#inc lude "SimpleApp .h"

// s imple ”main” f i l e which s e r v e s to bu i ld and run a CMOOSApp−der iv ed
app l i c a t i on

int main (int argc ,char ∗ argv [])
{

// s e t up some de f au l t app l i c a t i on parameters

//whats the name of the con f i gu r a t i on f i l e that the app l i c a t i on
// should look in i f i t needs to read parameters ?

4

const char ∗ sMi s s i onF i l e = "Mission.moos" ;

// under what name shoud the app l i c a t i on r e g i s t e r with the MOOSDB?
const char ∗ sMOOSName = "MyMOOSApp " ;

switch (argc)
{
case 3 :

//command l i n e says don ’ t r e g i s t e r with d e f au l t name
sMOOSName = argv [2] ;

case 2 :
//command l i n e says don ’ t use d e f au l t ”miss ion . moos” con f i g f i l e
sMi s s i onF i l e = argv [1] ;

}

//make an app l i c a t i on
CSimpleApp TheApp ;

// run fo r ev e r pas ing r e g i s t r a t i o n name and miss ion f i l e parameters
TheApp .Run(sMOOSName, sMi s s i onF i l e) ;

// probably w i l l never get here . .
return 0 ;

}

Listing 2: Simplest Application - main.cpp

// Ex1/SimpleApp . h : i n t e r f a c e f o r the CSimpleApp c l a s s .

#ifndef SIMPLEAPPH
#define SIMPLEAPPH

#include <MOOSLIB/MOOSApp. h>

class CSimpleApp : public CMOOSApp
{
public :

// standard con s t r u c t i on and de s t r u c t i on
CSimpleApp () ;
virtual ˜CSimpleApp () ;

protected :
//where we handle new mail
bool OnNewMail (MOOSMSG LIST &NewMail) ;
//where we do the work
bool I t e r a t e () ;
// c a l l e d when we connect to the s e r v e r
bool OnConnectToServer () ;
// c a l l e d when we are s t a r t i n g up . .
bool OnStartUp () ;

} ;

#endif

Listing 3: Simplest Application - main.cpp

5

#include "SimpleApp .h"

// de f au l t con s t r u c to r
CSimpleApp : : CSimpleApp ()
{
}
// de f au l t (v i r t u a l) d e s t r u c to r
CSimpleApp : : ˜ CSimpleApp ()
{
}

/∗∗
Cal led by base c l a s s whenever new mail has a r r i v ed .
Place your code f o r handl ing mail (n o t i f i c a t i o n s that something
has changed in the MOOSDB in th i s f unc t i on

Parameters :
NewMail : s td : : l i s t <CMOOSMsg> r e f e r e n c e

Return va lues :
r e turn true i f everyth ing went OK
return f a l s e i f ther e was problem

∗∗/
bool CSimpleApp : : OnNewMail (MOOSMSG LIST &NewMail)
{

return true ;
}

/∗∗
c a l l e d by the base c l a s s when the app l i c a t i on has made contac t with
the MOOSDB and a channel has been opened . Place code to s p e c i f y what
n o t i f i c a t i o n s you want to r e c e i v e here .
∗∗/
bool CSimpleApp : : OnConnectToServer ()
{

return true ;
}

/∗∗ Cal led by the base c l a s s p e r i o d i c a l l y . This i s where you p lace code
which does the work o f the app l i c a t i on ∗∗/
bool CSimpleApp : : I t e r a t e ()
{

return true ;
}

/∗∗ c a l l e d by the base c l a s s b e f o r e the f i r s t : : I t e r a t e i s c a l l e d . Place
s tar tup code here − e s p e c i a l l y code which reads con f i gu r a t i on data from the
mi s s i on f i l e ∗∗/
bool CSimpleApp : : OnStartUp ()
{

return true ;
}

3 The Important CMOOSApp Virtual Functions

CMOOSApp itself contains a few important virtual functions which can (should)
be overridden in derived classes. These functions are called by the base class at
the suitable time.

6

3.1 Iterate

By overriding the CMOOSApp::Iterate function in a new derived class, the
author creates a function from which he or she can orchestrate the work that
the application is tasked with doing. As an example, and without prejudice,
imagine the new application was designed to control a marine vehicle. The
iterate function is automatically called by the base class periodically and so it
makes sense to execute one cycle of the controller code from this “Iterate ”
function. Some things to note here:

• Don’t enter into an infinite loop waiting on data in this code - it won’t
break anything (the thread that handles the communications with other
processes will still be running and responsive to you posting or checking
for mail) but it is rather orthogonal to the intended use of CMOOSApp .

• You can configure the rate at which Iterate is called by the SetAppFreq()
method or by specifying the “AppTick” parameter in a mission file (see
Section 6.1 for more on configuring an application from a file).

• Note that the parameter passed to SetAppFreq() specifies the maximum
frequency at which Iterate will be called - it does not guarantee that it
will be called then - for example if you write code in iterate that takes 1s
to complete there is no way that iterate can be called at more than 1Hz.

• If you want to call iterate as fast as is possible simply call SetAppFreq(0)
— but ask yourself why you need such a greedy application, are you being
polite?

• Although MOOSApp doesn’t enter into a contract with you about exactly
when Iterate will be called, it does allow you to know when it is
being called. The function MOOSTime returns unix time in floating point
seconds.

3.2 OnNewMail

This function is called from within CMOOSApp::Run() if and when some other
process has posted data that you (“you” being the application here) have pre-
viously declared an interest in (see Section 4.1). The mail arrives in the form of
a std::list<CMOOSMsg> — a list of CMOOSMsg objects (see Section 5). The
programmer is free to iterate over this collection examining who sent the data,
what it pertains to, how old it is, whether or not it is string or numerical data
and to act / process the data accordingly.

3.3 OnConnectToServer

Unlike Iterate and OnNewMail this function is not called directly from
CMOOSApp::Run() . It is actually a callback from a thread in the m Comms

object (a instance CMOOSCommsObject) possessed by CMOOSApp that handles
all the IPC communications 3. The callback occurs whenever contact has been
made with the MOOSDB server which sits at the heart of the MOOS topology (see
Section on “Topology” in the CommsArchitecture document.) This is one of two

3Indeed you could think of CMOOSApp as a fancy wrapper for this object.

7

places where the programmer is advised to call m Comms.Register to tell the
MOOSDB that we want to be sent mail if any other process posts data relating to a
particular variable. See the example code and the sibling “CommsArchitecture”
document and this will become blindingly obvious. Just remember that code
executed in this callback is not in thread 0.

3.4 OnDisconnectFromServer

This is the counter part of OnConnectToServer . It is called when contact has
been lost with the MOOSDB - generally, if this happens something terrible has
happened. It is here for completeness. If there is nothing special you want to do
when comms has been lost, don’t bother adding this function to your CMOOSApp
-derived class.

3.5 OnStartUp

This function is called by CMOOSApp::Run just before it enters into its own
“forever-loop”. This is the spot that you would populate with initialisation
code, and in particular use the functionality provided by the m MissionReader

member object to read configuration parameters (including those that modify
the default behaviour of the CMOOSApp base class) from file. See Section 6.1
for more details on configuration from file.

4 A Second Worked Example - Handling Mail

At present our application really doesn’t do much - it just connects to the DB
and sits there (behind the scenes the application is in regular contact with the
DB but you wouldn’t know it at the moment). So we’ll now modify the Example
1 code and fill in the functions described in Section 3. The code in Main.cpp
remains unchanged 4 so we won’t replicate it here, but Listings 4 and 5 show
the updated code for our own MOOSApp .

We shall pretend we are building some process running on a vehicle5 — per-
haps some kind of navigation process. Anyway, assume that this process needs
to know about the status of the vehicle and its heading. We assume that some
other processes (written by someone who has already read this document...) are
publishing this data via the MOOS infrastructure. The question is, how do we
get hold of this data? The first thing to do is “register” for mail and then write
code in the OnNewMail function to parse the mail. We’ll cover these topics in
Sections 4.1 and 4.2.

Listing 4: Simplest Application - main.cpp

// Ex2/SimpleApp . h : i n t e r f a c e f o r the CSimpleApp c l a s s .

#ifndef SIMPLEAPPH
#define SIMPLEAPPH

#include <MOOSLIB/MOOSApp. h>

4Apart from the fact that the MOOSApp is told to register as “Ex2” rather than “Ex1”.
5That’s just because I work on mobile robotics - there is nothing about the MOOS Comms

API that is specific to autonomous vehicles.

8

class CSimpleApp : public CMOOSApp
{
public :

// standard con s t r u c t i on and de s t r u c t i on
CSimpleApp () ;
virtual ˜CSimpleApp () ;

protected :
//where we handle new mail
bool OnNewMail (MOOSMSG LIST &NewMail) ;
//where we do the work
bool I t e r a t e () ;
// c a l l e d when we connect to the s e r v e r
bool OnConnectToServer () ;
// c a l l e d when we are s t a r t i n g up . .
bool OnStartUp () ;

// s ta t e our i n t e r e s t in v a r i a b l e s
void DoReg i s t r at i ons () ;

//we ’ l l c a l l t h i s i f /when we r e c e i v e a v eh i c l e s t a tu s message
bool OnVehicleStatus (CMOOSMsg & Msg) ;

//we ’ l l c a l l t h i s i f /when we r e c e i v e a heading message
bool OnHeading (CMOOSMsg & Msg) ;

} ;

#endif

Listing 5: Simplest Application - main.cpp

#include "SimpleApp .h"

#include <MOOSGenLib/MOOSGenLibGlobalHelper . h>

// de f au l t con s t r u c to r
CSimpleApp : : CSimpleApp ()
{
}
// de f au l t (v i r t u a l) d e s t r u c to r
CSimpleApp : : ˜ CSimpleApp ()
{
}

/∗∗
Cal led by base c l a s s whenever new mail has a r r i v ed .
Place your code f o r handl ing mail (n o t i f i c a t i o n s that something
has changed in the MOOSDB in th i s f unc t i on

Parameters :
NewMail : s td : : l i s t <CMOOSMsg> r e f e r e n c e

Return va lues :
r e turn true i f everyth ing went OK
return f a l s e i f ther e was problem

∗∗/
bool CSimpleApp : : OnNewMail (MOOSMSG LIST &NewMail)

9

{
MOOSMSG LIST : : i t e r a t o r p ;

for (p=NewMail . begin () ; p!=NewMail . end () ; p++)
{
// l e t s get a r e f e r e n c e to the Message − no need f o r p o i n t l e s s copy
CMOOSMsg & rMsg = ∗p ;

// r e p e t i t i v e ” i f s ” i s one way to bu i ld a switch yard f o r
// the messages
i f (MOOSStrCmp(rMsg . GetKey () , "VehicleStatus"))
{

// th i s message i s about something c a l l e d ”VariableX”
OnVehicleStatus (rMsg) ;

}
else i f (MOOSStrCmp(rMsg . GetKey () , "Heading "))
{

// th i s message i s about something c a l l e d ”VariableY”
OnHeading (rMsg) ;

}
}

return true ;
}

/∗∗
c a l l e d by the base c l a s s when the app l i c a t i on has made contac t with
the MOOSDB and a channel has been opened . Place code to s p e c i f y what
n o t i f i c a t i o n s you want to r e c e i v e here .
∗∗/
bool CSimpleApp : : OnConnectToServer ()
{

//do r e g i s t r a t i o n s
DoReg i s t r at i ons () ;

return true ;
}

/∗∗ Cal led by the base c l a s s p e r i o d i c a l l y . This i s where you p lace code
which does the work o f the app l i c a t i on ∗∗/
bool CSimpleApp : : I t e r a t e ()
{

return true ;
}

/∗∗ c a l l e d by the base c l a s s b e f o r e the f i r s t : : I t e r a t e i s c a l l e d . Place
s tar tup code here − e s p e c i a l l y code which reads con f i gu r a t i on data from the
mi s s i on f i l e ∗∗/
bool CSimpleApp : : OnStartUp ()
{

//do r e g i s t r a t i o n s − i t s good p r a c t i c e to do th i s BOTH in OnStartUp and
// in OnConnectToServer − that way i f comms i s l o s t r e g i s t r a t i o n s w i l l be
// r e i n s t i g a t e d when the connect i on i s remade
DoReg i s t r at i ons () ;

return true ;
}

10

bool CSimpleApp : : OnVehicleStatus (CMOOSMsg & Msg)
{

MOOSTrace("I (%s) received a notification about \"% s\" the details are :\n" ,
GetAppName () . c s t r () ,
Msg . GetKey () . c s t r ()) ;

// i f you want to see a l l the d e t a i l s you can pr i n t a message . . .
//Msg . Trace () ;

i f (! Msg . I s S t r i n g ())
return MOOSFail("Ouch - I was promised \" VehicleStatus\" would be a string !")

;

//OK the guy who wrote the program that pub l i s h e s Veh i c l eSta tus wrote me an
// emai l say ing the format o f the message i s :
// Status = [Good/Bad/Sunk] , BatteryVoltage = <double >, B i l ge =[on/ o f f]
// so here we parse the b i t s we want from the s t r i n g
std : : s t r i n g sStatus="Unknown " ;
i f (! MOOSValFromString (sStatus ,Msg . GetStr ing () , "Status "))
MOOSTrace("warning field \" Status \" not found in VehicleStatus string %s" ,

MOOSHERE) ;

double dfBatteryVoltage =−1;
i f (! MOOSValFromString (dfBatteryVoltage ,Msg . GetStr ing () , " BatteryVoltage"))
MOOSTrace("warning field \" BatteryVoltage\" not found in VehicleStatus string

 %s" ,MOOSHERE) ;

// s imple p r i n t out our f i n d i n g s . .
MOOSTrace("Status is \"% s\" and battery voltage is %.2 fV\n" , sStatus . c s t r () ,

dfBatteryVoltage) ;

return true ;
}

bool CSimpleApp : : OnHeading (CMOOSMsg & Msg)
{

MOOSTrace("I (%s) received a notification about \"% s\" the details are :\n" ,
GetAppName () . c s t r () , // note GetAppName () r e tu r n s the name of t h i s

app l i c a t i on as seen by the DB
Msg . GetKey () . c s t r ()) ; // note GetKey () r e turn the name of the va r i ab l e

// i f you want to see a l l the d e t a i l s you can pr i n t a message . . .
//Msg . Trace () ;

//you might want to be sur e that the message i s i n the format you were
expect ing

// in t h i s case heading comes as a s i n g l e double . . .

i f (! Msg . IsDouble ())
return MOOSFail("Ouch - was promised \" Heading \" would be a double %s" ,

MOOSHERE) ;

double dfHeading = Msg . GetDouble () ;
double dfTime = Msg . GetTime () ;

MOOSTrace("The heading (according to process %s),at time %f (%f since
appstart) is %f\n" ,

Msg . GetSource () . c s t r () , //who wrote i t
dfTime , //when

11

dfTime−GetAppStartTime() , // time s i n c e we s ta r t ed running (e a s i e r to
read)

dfHeading) ; // the actua l heading

return true ;
}

void CSimpleApp : : DoReg i s t r at i ons ()
{

// r e g i s t e r to be to l d about every change (wr i te) to ” Veh i c l eStatus ”
m Comms. Reg i s t e r (" VehicleStatus" , 0) ;

// r e g i s t e r to be to l d about changes (wr i t e s) to ”Heading ” at at most
//4 times a second
m Comms. Reg i s t e r ("Heading " , 0 . 2 5) ;

return ;
}

4.1 Registering for Mail

An instance of MOOSApp comes with an CMOOSCommClient object called
m Comms — this is the guy that allows us to register for mail with a call to
m Comms.Register() . In Listing 5 two such calls are made in a function called
DoRegistrations where we register for messages (mail) about “Heading” and
“VehicleStatus”. Note that the former will be delivered at a maximum of 4Hz
(irrespective of how often some unknown external process is writing the data
6) while “VehicleStatus” messages will be delivered to us every time someone
writes “VehicleStatus”.

4.1.1 Where and When Should the Registrations Occur?

I advise folk to register for mail in two places. Once at the end of OnStartup()
and once in OnConnectToServer() . The reasons for this are as follows.

• It is usual to execute code in OnStartUp which determines what mail
we want to register for (e.g. as a result of parsing the mission file which
should happen in OnStartUp — see later for more on Mission Files.)

• Connection to the DB is asynchronous (it depends on what else is going
on in the network). Accordingly OnConnectToServer might be called
before or after OnStartUp() so in the former case we’d want to per-
form registrations at the end of OnStartUp and in the latter case in
OnConnectToServer . 7

6This is a good thing - it stops some over-zealous process (which you didn’t write) causing
copious amounts of mail to your door.

7Hmmm, upon reflection maybe there is a case to be made for having persistent registra-
tions so the CommsClient remembers all the registrations you ever ask for and makes sure
that these are preserved across DB connections/disconnections...I would welcome a view on
this...

12

4.2 Parsing Messages

Perhaps the most important thing to focus on in Listing 5 is the OnNewMail

method. Here you can see how (in this example) the list of CMOOSMsgs that
have been delivered to us (in response to earlier calls to m Comms.Register -
see section 4.1) are cracked and execution is routed as a function of the variable
name which each message pertains to. Pretty simple.

So, having marshalled execution to regions of code dedicated to handling
CMOOSMsgs pertaining to particular named data (like heading of vehicle status
in our rather contrived example) we need to extract the data itself. CMOOSMsgs
can contain double-data (Msg.GetDouble()) or string-data (Msg.GetString()
). In this case we were promised by other developers that “VehicleStatus”
will be a string-variable and “Heading” will be a double-variable. You can see
this contract being checked in the two message cracking methods in Listing
5. Extracting the double precision data from the heading messages is trivial,
however extracting data from the string of vehicle status is more interesting and
is a common problem in MOOSApplications. As you might expect, there are a
whole load of tools ready and waiting to help you with this task (many of them
are found in the header file MOOSGenLibGlobalHelper.h — see Section 10).
We’ll talk about string manipulation in the context of Parsing CMOOSMsgs in
Section 4.5.

4.3 Using ::PeekMail for Sorting Mail

The example code in Listing 5 used a bunch of “if” statements inside an intera-
tion overall message to marshall the incoming message to the correct handler. It
is possible to do away with writing for loop by using the CMOOSCommsClient::PeekMail
function 8. This function is passed a reference to the whole list of incoming mes-
sages and extracts a particular message according to the name of the variable
we are interested in. Importantly this method can extract the most recent
message of a given name. Why is this useful? Well, imagine you’ve requested
to receive notifications about every write to a named variable. It is quite possi-
ble that some other client published data about that particular variable many
times since our application last received mail. Hence we will receive multiple
messages pertaining to the same variable in our MOOSMSG LIST when OnNewMail

is called. We can imagine that it would be pretty useful at times to only act
on the most uptodate (recent) message. A call to PeekMail can also remove
(rather than copy) the message from the MOOSMSG LIST . Look at Listing 6 for
a coded example.

4.4 Checking for Stale Messages

When a process starts up and registers for mail, it has no knowledge about
the state of variables stored in the DB. If at the time an application registers
for notifications about a particular variable that variable already exists in the
MOOSDB it will be sent a message about that variable which will appear in
the mail on the first time OnNewMail is invoked. This might mean that an
application receives a message from the DB about a posting which is days old.
An obvious approach would be to check the time field of each message and only

8i.e you would call m Comms.PeekMail(...)

13

process messages that are “recent”. The method CMOOSMsg::IsSkewed is an
easy way to check this - behind the scenes it simply makes sure the message in
question has a time field within a few seconds of the current time. Of course
one may want better precision on what counts as stale mail and want to write
your own method to do so. However IsSkewed is ofen useful to make the first
cut. Look at Listing 6 for a coded example.

Listing 6: An alternative way of handling mail. This time using PeekMail and
also checking for stale messages.

/∗∗ an a l t e r n a t i v e OnNewMail us ing PeekMail and checking f o r s t a l e
messages ∗/

bool CSimpleApp : : OnNewMail (MOOSMSG LIST &NewMail)
{

CMOOSMsg Msg ;
double dfNow = MOOSTime() ;
i f (m Comms. PeekMail (NewMail , "VehicleStatus" ,Msg , fa lse , true))
{
i f (! Msg . IsSkewed (dfNow))
{

OnVehicleStatus (Msg) ;
}
}
i f (m Comms. PeekMail (NewMail , "Heading " ,Msg , fa lse , true))
{
i f (! Msg . IsSkewed (dfNow))
{

OnHeading (Msg) ;
}
}

return true ;
}

4.5 Parsing Strings

The developer is in no way obligated to use the string parsing methods provided
by the MOOS Core libraries. But they are there to be used and by doing so
the developer is more likely to adopt string structures/formats used by the
multitude of MOOS processes already in existence.

The good thing about sending string data is that multiple fields can be sent
at the same time. Typically a string is sent as a comma separated list of param-
eter=value pairs where value is itself a string, double or string representation of
a matrix. For example, the developer of a process which publishes “VehicleSta-
tus” messages told us that the data would use the string field of MOOSMsgs
and would contain the following fields:

Status one of “good”, “bad” or “sunk” (the latter presumably being a special
case of “bad”)

BatteryVoltage a double value

Bilge a string, one of “On” or “Off’.

The data corresponding to each of these tokens can be extracted from
the string of the CMOOSMsg (or any string for that matter) by using the

14

::MOOSValFromString family of functions found in MOOSGenLib — see Sec-
tion 10. The reader’s attention is also drawn to the way in which chunks of nu-
merical (std::vector<double>) data can be sent and extracted from strings.

4.6 Testing The New Application

So we’ve built our new application — how do we test it? Well, usually you’d
run it in the system in which it was designed to reside, but this is a fictitious
system and no processes that write “VehicleStatus’ and or “Heading” exist. So
we could either write new processes that do, or use a preexisting tool to write
data to the MOOSDB and see our application respond appropriately. The former
is described in Section 4.7 and the latter in Section 4.6.1.

4.6.1 Testing with uMS

The simplest way to test our example is to launch the graphical tool uMS 9.
The steps are as follows:

1. Start an instance of MOOSDB (either double click in Windows or type
MOOSDB & from a terminal in linux).

2. Start an instance of uMS . Press the connect button (the default is to
connect to a MOOSDB using the MOOSDB defaults settings). You should
see uMS come to life.

3. Start an instance of your new application. In this case it is called Ex2.
You should see its existence being detected by both the MOOSDB and uMS

.

4. Pick a blank line in uMS and ctrl-left click in the left most column. From
here you can “Poke the MOOS” with new data (indeed clicking on an
existing variable allows you to change that variable).

5. Start by poking “Heading” into the system as a double. You should see
your application (Ex2) print to the screen that it has received heading
data.

Figure 4.6.1 shows a screen shot of this process taken from my machine
(which today happens to be a linux box).10

4.7 Testing Ex2 with Another Application

A more interesting way of testing our new application is to write another new
process which writes “VehicleStatus” and “Heading”11. The code for such a
process can be found in the Ex3 directory. The main thing to notice is that the
::Iterate() function is now populated with code which publishes data using

9Again, it is assumed that you have already built the MOOS distribution which includes
uMS which uses the FLTK library. See the sibling document on Graphical tools for more
information on uMS .

10The screen shot isn’t brilliant - you may have to zoom in or look at the raw image
(UsinguMS.eps) if you want real detail.

11We could write two - one for Heading and one for VehicleStatus but there is nothing new
to be learned there.

15

Figure 2: Using uMS to poke data into the MOOSDB to test a new application.

the Notify method of the m Comms member. The guts of the new application
(simulator) is given in Listing 7. Of course the details of how the simulator
works are irrelevant (I’d hardly call it a simulator); the code is provided here
just to show how data is posted to the DB. Note that the third field to the
Notify method is optional - if you don’t supply a time, MOOSTime() is called
behind the scenes for you 12.

Listing 7: Code for a “heading and status” simulator

#include "Simulator .h"

#include <math . h>

// de f au l t con s t r u c to r
CSimulator : : CSimulator ()
{
}

// de f au l t (v i r t u a l) d e s t r u c to r
CSimulator : : ˜ CSimulator ()
{
}

/∗∗
Cal led by base c l a s s whenever new mail has a r r i v ed .
Place your code f o r handl ing mail (n o t i f i c a t i o n s that something
has changed in the MOOSDB in th i s f unc t i on

Parameters :

12It is common practice when sending string data to send the time field in the string as
well, but it is not a requirement of course – you can send what you want in strings.

16

NewMail : s td : : l i s t <CMOOSMsg> r e f e r e n c e

Return va lues :
r e turn true i f everyth ing went OK
return f a l s e i f ther e was problem

∗∗/
bool CSimulator : : OnNewMail (MOOSMSG LIST &NewMail)
{

return true ;
}

/∗∗
c a l l e d by the base c l a s s when the app l i c a t i on has made contac t with
the MOOSDB and a channel has been opened . Place code to s p e c i f y what
n o t i f i c a t i o n s you want to r e c e i v e here .
∗∗/
bool CSimulator : : OnConnectToServer ()
{

return true ;
}

/∗∗ Cal led by the base c l a s s p e r i o d i c a l l y . This i s where you p lace code
which does the work o f the app l i c a t i on ∗∗/
bool CSimulator : : I t e r a t e ()
{

stat ic int k = 0 ;
i f (k++%10==0)
{
// s imulate some brownian motion
stat ic double dfHeading = 0 ;
dfHeading+=MOOSWhiteNoise (0 . 1) ;

// pub l i sh the data (2nd param i s a double so i t w i l l be f o r e v e r double data
. . .)

m Comms. Not i f y ("Heading " , dfHeading ,MOOSTime()) ;
}
i f (k%35==0)
{

stat ic double dfVo l t s = 100 ;
dfVolts−=fabs (MOOSWhiteNoise (0 . 1)) ;
s td : : s t r i n g sStatus = MOOSFormat("Status =%s,BatteryVoltage =%.2f,Bilge = %s" ,

d fVol ts >50.0? "Good" : "Bad " ,
d fVol ts ,
k%100>50?"On" : "Off ") ;

// pub l i sh the data (2nd param i s a std : : s t r i n g so i t w i l l be f o r e v e r s t r i n g
data . . .)

m Comms. Not i f y ("VehicleStatus" , sStatus ,MOOSTime()) ;
}
return true ;

}

/∗∗ c a l l e d by the base c l a s s b e f o r e the f i r s t : : I t e r a t e i s c a l l e d . Place
s tar tup code here − e s p e c i a l l y code which reads con f i gu r a t i on data from the
mi s s i on f i l e ∗∗/
bool CSimulator : : OnStartUp ()
{

return true ;
}

17

Figure 3: Spying on Ex2 and the crude simulator (Ex3) in action

Variable Meaning

Name The name of the data
String Val Data in string format
Double Val Numeric double float data
Source Name of client that sent this data to the MOOSDB

Time Time at which the data was written
Data Type Type of data (STRING or DOUBLE)
Message Type Type of Message (usually NOTIFICATION)
Source Community The community to which the source process belongs — see the Section on “MOOS Comm

Table 1: Contents of MOOS Message

So after building Ex3 you can start it up and see Ex2 respond to the mes-
sages being posted. You should also get warm fuzzies about seeing the two
applications in action via uMS . Figure 4.7 is a screen shot of uMS running
when Ex3 (which registers with the DB as Simulator) and Ex2 are running.

5 Message Content — CMOOSMsg

The communications API in MOOS allows data to be transmitted between
MOOSDB and a client. The meaning of that data is dependent on the role of the
client. However the form of that data is constrained by MOOS. Somewhat un-
usually, MOOS only allows for data to be sent in string or double form. Data is
packed into messages (CMOOSMsg class) which contain other salient informa-
tion as shown in Table 1. The fact that data is commonly sent in string format is
often seen as a strange and inefficient aspect of MOOS. For example, the string
Type=EST,Name=AUV,Pos=[3x1]{3.4,6.3,-0.23} might describe the position

18

estimate of a vehicle called “AUV” as a 3x1 column vector13. It is true that
using custom binary data formats does decrease the number of bytes sent. How-
ever, binary data is unreadable to humans and requires structure declarations
to decode it, and header file dependencies are to be avoided where possible. The
communications efficiency argument is not as compelling as one may initially
think. The CPU cost invoked in sending a TCP/IP packet is largely indepen-
dent of size up to about one thousand bytes. So it is as costly to send two bytes
as it is one thousand. In this light there is basically no penalty in using strings.
There is however a additional cost incurred in parsing string data, which is
far in excess of that incurred when simply casting binary data. Irrespective of
this, experience has shown that the benefits of using strings far outweigh the
difficulties. In particular:

• Strings are human-readable – debugging is trivial, especially using a tool
like MOOSScope. (see the document on Graphical tools for more infor-
mation.)

• All data becomes the same type.

• Logging files are human-readable (they can be compressed for storage).

• Replaying a log file is simply a case of reading strings from a file and
“throwing” them back at the MOOSDB in time order.

• The contents and internal order of strings transmitted by an application
can be changed without the need to recompile consumers (subscribers to
that data) – users simply would not understand new data fields but they
would not crash.

Of course, scalar data need not be transmitted in string format – for example
the depth of a sub-sea vehicle. In this case the data would be sent while setting
the data type to MOOS_DOUBLE and writing the numeric value in the double data
field of the message.

6 Important CMOOSApp Methods

6.1 Reading Configurations From File

Every MOOS process can read configuration parameters from a “Mission file”
which by convention has a “.moos” extension. For example, the default mission
file mentioned in the example code given in Appendix A is Mission.moos. Tra-
ditionally MOOS processes share the same mission file to the maximum extent
possible. For example, it is usual for there to be one common mission file for
all MOOS processes running on a given machine. Every MOOS process has
information contained in a configuration block within a *.moos file. The block
begins with the statement

ProcessConfig = ProcessName

13Typically string data in MOOS is a concatenation of comma separated ”name = value”
pairs.

19

Figure 4: A typical configuration block for a MOOS application. A process
called “iDepth” will search a mission file until a block like this is found. It will
then parse our configuration parameters.

/////////////////////////////
// depth sen sor c on f i gu r a t i on
ProcessConf ig = iDepth
{

AppTick = 8
CommsTick = 4
Port = com1
BaudRate = 9600
Streaming = f a l s e
Type = ParaSci
Reso lu t ion = 0.1

}

where ProcessName is the unique name the application will use when connect-
ing to the MOOSDB . The configuration block is delimited by braces. Within the
braces there is a collection of parameter statements – one per line.

Each statement is written as

ParameterName = Value

where Value can be any string or numeric value. All applications deriving
from CMOOSApp and CMOOSInstrument inherit several important configuration
options. The most important options for CMOOSApp derived applications are
CommTick and AppTick . The latter configures how often the communications
thread talks to the MOOSDB and the former how often (approximately) iterate
will be called.

Figure 6.1 gives an example of a typical configuration block, in this case for
a depth sensor. The parameters Type and Resolution are specific to the
class defining the methods of a “DepthSensor”. All the other parameters are
handled by its base classes — in this case (CMOOSInstrument and CMOOSApp

).

6.2 Parsing Configuration Blocks

The library MOOSGenLin (see section 10) contains many functions and classes
designed to help with parsing mission files. In particular the CMOOSApp class
comes equipped with its own CMOOSProcessConfiguration object called
m MissionReader . By the time OnStartup is called, this object is already
configured for use (i.e. it already knows which block it should be reading in the
config file) and can be queried at will. Listing 8 shows a modified version of
our simulator (found in the “Ex4” directory). Note the new code appearing in
OnStartup which looks for parameters in the mission file by making calls on
the ProcessConfig reader object. You might also want to refer back to Sections
4.5 and 10 to review the methods available for string passing.

20

Listing 8: A modified simulator application which reads configuration informa-
tion from its mission file.

#include "Simulator .h"

#include <math . h>

// de f au l t con s t r u c to r
CSimulator : : CSimulator ()
{
}

// de f au l t (v i r t u a l) d e s t r u c to r
CSimulator : : ˜ CSimulator ()
{
}

/∗∗
Cal led by base c l a s s whenever new mail has a r r i v ed .
Place your code f o r handl ing mail (n o t i f i c a t i o n s that something
has changed in the MOOSDB in th i s f unc t i on

Parameters :
NewMail : s td : : l i s t <CMOOSMsg> r e f e r e n c e

Return va lues :
r e turn true i f everyth ing went OK
return f a l s e i f ther e was problem

∗∗/
bool CSimulator : : OnNewMail (MOOSMSG LIST &NewMail)
{

return true ;
}

/∗∗
c a l l e d by the base c l a s s when the app l i c a t i on has made contac t with
the MOOSDB and a channel has been opened . Place code to s p e c i f y what
n o t i f i c a t i o n s you want to r e c e i v e here .
∗∗/
bool CSimulator : : OnConnectToServer ()
{

return true ;
}

/∗∗ Cal led by the base c l a s s p e r i o d i c a l l y . This i s where you p lace code
which does the work o f the app l i c a t i on ∗∗/
bool CSimulator : : I t e r a t e ()
{

stat ic int k = 0 ; // a s imple counter to s imulate a s imulator − not an
important d e t a i l . . .

i f (k++%10==0)
{
// s imulate some brownian motion
m dfHeading+=MOOSWhiteNoise (0 . 1) ;

// pub l i sh the data (2nd param i s a double so i t w i l l be f o r e v e r double data
. . .)

s td : : s t r i n g sVarName = m sVehicleName+"_Heading " ;
m Comms. Not i f y (sVarName , m dfHeading ,MOOSTime()) ;
}
i f (k%35==0)
{

21

m dfBatteryVoltage−=fabs (MOOSWhiteNoise (0 . 1)) ;
s td : : s t r i n g sStatus = MOOSFormat("Status =%s,BatteryVoltage =%.2f,Bilge = %s" ,

m dfBatteryVoltage >50.0? "Good" : "Bad " ,
m dfBatteryVoltage ,
m sBi lge . c s t r ()) ;

// pub l i sh the data (2nd param i s a std : : s t r i n g so i t w i l l be f o r e v e r s t r i n g
data . . .)

// note how name of va r i ab l e i s s e t by what was read from con f i gu r a t i on f i l e
std : : s t r i n g sVarName = m sVehicleName+"_Status " ;
m Comms. Not i f y (m sVehicleName , sStatus ,MOOSTime()) ;
}
return true ;

}

/∗∗ c a l l e d by the base c l a s s b e f o r e the f i r s t : : I t e r a t e i s c a l l e d . Place
s tar tup code here − e s p e c i a l l y code which reads con f i gu r a t i on data from the
mi s s i on f i l e ∗∗/
bool CSimulator : : OnStartUp ()
{

// here we ex t r a c t the v eh i c l e name . .
m sVehicleName = "UnNamed " ;
i f (! m MissionReader . GetConfigurationParam("VehicleName " , m sVehicleName))
MOOSTrace("Warning parameter \" VechicleName\" not specified . Using default of

 \"% s\"\ n" , m sVehicleName . c s t r ()) ;

// here we ex t r a c t a vector o f doubles from the con f i gu r a t i on f i l e
std : : vector <double> v I n i t i a l L o c a t i o n (3 , 0 . 0) ;
int nRows=v In i t i a l L o c a t i o n . s i z e () ;
int nCols = 1 ;
i f (! m MissionReader . GetConfigurationParam("InitialLocation" , v In i t i a l Loca t i on ,

nRows , nCols))
MOOSTrace("Warning parameter \" InitialLocation\" not specified . Using default

 of \"% s\"\ n" , DoubleVector2Str ing (v I n i t i a l L o c a t i o n) . c s t r ()) ;

// here we ex t r a c t a more compl icated compound s t r i n g parameter
std : : s t r i n g sComplex ;
i f (m MissionReader . GetConfigurationParam(" InitialConditions" , sComplex))
{
//OK now we can suck out i n d i v i d u a l parameters from sComplex

//what i s the i n i t i a l B i l ge cond i t i on s ta tu s ?
m sBi lge = "Off " ;
MOOSValFromString (m sBilge , sComplex , "Bilge ") ;

//what i s the i n i t i a l battery Voltage ?
m dfBatteryVoltage = 100 . 0 ;
MOOSValFromString (m dfBatteryVoltage , sComplex , "BatteryVoltage") ;

//what i s the i n i t i a l heading
m dfHeading = 0 ;
MOOSValFromString (m dfHeading , sComplex , "Heading ") ;

}
else

{
//bad news − t h i s one i s compulsory f o r t h i s app l i c a t i on . . .
return MOOSFail("no \" InitialConditions \" specified in mission file (

compulsory)\n") ;
}

22

MOOSTrace("Verbose Summary :\n") ;
MOOSTrace("\tVehicle is called : %s\n" , m sVehicleName . c s t r ()) ;
MOOSTrace("\tInitial Location is : %s\n" , DoubleVector2Str ing (

v I n i t i a l L o c a t i o n) . c s t r ()) ;
MOOSTrace("\tHeading is : %f\n" , m dfHeading) ;
MOOSTrace("\tBatteryVoltage is : %s\n" , m sBi lge . c s t r ()) ;

return true ;
}

We can now run up the simulator (which compiles using the CMake files
supplied to “Ex4”) and pass it a mission file as a parameter. But first we must
create a suitable mission file — for example “Ex4.moos” which is reproduced in
Listing 9.

Listing 9: A simple mission file for Ex4

// t e l l a l l p r o c e s s e s where the DB i s (de f au l t i s l o c a l h o s t : 9000)
ServerPort = 9000
Serverhos t = l o c a l h o s t

Proces sConf i g = Simulator
{

//how f a s t should i t e r a t e be c a l l e d ? (used by CMOOSApp)
AppTick= 10

//how r e spon s i v e should comms be? (used by CommsClient)
CommsTick = 10

//name of the v eh i c l e
VehicleName = TheGoodShipMOOS

// i n i t i a l l o c a t i o n
I n i t i a l L o c a t i o n = [3 x1]{0 ,1 , 2}

//a more complex compound con f i g s t r i n g
I n i t i a l C on d i t i o n s = Bi l ge=o f f , BatteryVoltage =101 , Heading = 0.57

}

In Figure 5 you can see a screen shot of what you should see happening when
you launch Ex4 and point it at Ex4.moos (don’t forget to launch a MOOSDB

first14.

6.3 The Role of AppTick and CommsTick

Every configuration block can set the AppTick and CommsTick properties
of a CMOOSApp derived application — see for example Figure 6.1. The former
specifies the target rate (in Hz and can be less that 1.0) that ::Iterate will
be called at. Setting AppTick to zero is a special case and causes Iterate to be
called as fast as possible (in other words the ::Run method of CMOOSApp
loops without any “sleep” period) — use this with caution and good manners.

14I tend to always have one running on my machine.

23

Figure 5: A screen shot of Ex4 being run. Note how it was launched and has
picked up the configuration parameters from Ex4.moos (see Listing 9)
.

24

The CommsTick variable dictates how often the m Comms object owned by every
CMOOSApp contacts the DB in a never-ending quest to collect and post data
from and to the DB. High values will lead to snappy response times if combined
with high AppTick . If your application needs to call Iterate to do work often
but you don’t expect or require fast communication with other processes, then
a high AppTick and a low CommsTick will suffice.

7 Using the CMOOSVariables with CMOOSApp

There is one other functionality provided by CMOOSApp which can prove very
useful and that is the ability to create and manage runtime variables. You may
well find that your application needs to maintain a representation of system
state using a whole set of variables which are set according to the contents
of incoming mail. To be concrete (and perhaps a bit naive) one can imagine
a navigation application possessing variables for heading, speed, fuel, engine
speed, headwind, current, depth. Each of these variables would appear in the
mail processing switch yard (where they are updated to the values contained in
individual MOOS messages) and each variable would have to be persistent — in
a object-oriented outlook this would mean a whole list of member variables. For
a few such variables this is no big deal but in applications that have requested
notifications on large numbers of variables, the mail processing function becomes
long and tedious and the class itself becomes peppered with simple member
variables.

CMOOSApp offers a way to soothe this frustration with the following functions
(taken from MOOSApp.h).

// //
// DYNAMIC VARIABLES − AN OPTIONAL GARNISH
// //

/∗∗ Add a dynamic (run time) v a r i ab l e
@param sName name of the v a r i ab l e
@param sSubscribeName i f you c a l l RegisterMOOSVariables () the

v a r i ab l e w i l l be updated with ma i l c a l l e d <sSubscribeName> i f
and when you c a l l UpdateMOOSVariables ()

@param sPublishName i f you c a l l PublishFreshMOOSVariables () (and
you ’ ve wr i t t en to the dynamic v a r i ab l e s i n c e the l a s t c a l l)
the v a r i ab l e w i l l be publ i shed under t h i s name .

@param CommsTime − i f sSubscribeName i s not empty t h i s i s the
minimum time between updates which you are i n t e r e s t e d in
knowing about , so i f CommsTime=0.1 then the maximum update
rat e you w i l l s e e on the va r i ab l e from the DB i s 10HZ. ∗/

bool AddMOOSVariable(std : : s t r i n g sName , std : : s t r i n g sSubscribeName , std
: : s t r i n g sPublishName , double dfCommsTime) ;

/∗∗ r e tu rn a po in t e r to a named va r i ab l e ∗/
CMOOSVariable ∗ GetMOOSVar(std : : s t r i n g sName) ;

/∗∗ Reg i s t e r with the DB to be mailed about any changes to any dynamic
v a r i a b l e s which were c r eat ed with non−empty sSubscribeName f i e l d s
∗/

25

bool RegisterMOOSVariables () ;

/∗∗ Pass mail (u sua l l y c o l l e c t e d in OnNewMail) to the s e t o f dynamic
v a r i a b l e s . I f they are i n t e r e s t e d (mail name matches t h e i r
sub s c r i b e name) they w i l l update themse lves au tomat i ca l ly ∗/

bool UpdateMOOSVariables (MOOSMSG LIST & NewMail) ;

/∗∗ Set value in a dynamic v a r i ab l e i f the v a r i ab l e i s o f type double
(type i s s e t on f i r s t wr i t e) ∗/

bool SetMOOSVar(const std : : s t r i n g & sName , const std : : s t r i n g & sVal ,
double dfTime) ;

/∗∗ Set value in a dynamic v a r i ab l e i f the v a r i ab l e i s o f type s t r i n g
(type i s s e t on f i r s t wr i t e) ∗/

bool SetMOOSVar(const std : : s t r i n g & sVarName , double dfVal , double

dfTime) ;

/∗∗ Send any v a r i a b l e s (under t h e i r sPublishName see AddMOOSVariable)
which been wr i t t en to s i n c e the l a s t c a l l o f
PublishFreshMOOSVariables () ∗/

bool PublishFreshMOOSVariables () ;

The idea is that with a call to AddMOOSVariable one can dynamically cre-
ate a named variable (which behind the scenes is of type CMOOSVariable). As
you do so, you specify the name of the messages (the string returned by calls to
CMOOSMsg.GetKey()) which should be used to update this variable and also
the name under which you wish to publish this data should you wish to under-
take a notification. A concrete case may clarify things. Consider the case of
a GPS sensor application, calling AddMOOSVariable("X","","GPS X",0) will
create a dynamic variable called ”X”. I can set the value of this variable,
presumably after successful parsing of a string read from a serial port) via
SetMOOSVar("X",...) and, should I desire, retrieve it via GetMOOSVar("X",...)
. I don’t need to have a m dfGPSX variable explicitly declared in any class -
it is made at run time. Now a role of this hypothetical application is to inform
the MOOS community about the vehicle location — we need to do a “notify”
on “GPS X”. This is easily achieved by calling PublishFreshMOOSVariables

which calls a “notify” on any dynamic variable which has been written to since
the last invocation (so in this case if no new GPS data had been received from
the sensor no new data would be published to the MOOSDB). Imagine now you
have ten things you might like to post to the database as and when occasion
dictates — a single call to PublishFreshMOOSVariables handles the whole
thing for you.

Finally, consider the symmetrical case where instead of pushing data out we
want to read data in. In this case we would do something like AddMOOSVariable("Temp","ENGINE TEMP","",0)

. Here we are making a local MOOSVariable called Temp and telling the ap-
plication (which is a MOOSApp) that it is a mirror of the MOOSDB code variable
called ENGINE TEMP . So instead of having a if statement like

i f (Msg . Key ()=="ENGINE_TEMP")
{
}

26

in the OnNewMail we can simply call UpdateMOOSVariables(NewMail) and
if within the list of MOOSMsg there is a message pertaining to ENGINE TEMP it
will be automatically used to update the Temp variable. Note you do need to
make a call to RegisterMOOSVariables() to make sure that your application
does all the registrations for all your MOOSvariables for you.

8 Getting By Without MOOSApp

There may be times when a developer does not wish to write an application
from scratch using CMOOSApp , preferring to add the MOOS communications
functionality to an existing application. This is an easy thing to achieve; a
typical plan is laid out in the following five steps:

1. Instantiate a persistent instance of CMOOSCommClient – perhaps as class
member or even as a global singleton.

2. If required, use the CMOOSCommClient::SetOnConnectCallBack and
CMOOSCommClient::SetOnDisConnectCallBack methods to tell the com-
munications object what functions to call when a connection is made (or
lost) with the MOOSDB . Note that these callbacks will happen in a separate
thread. The latter of these callback registration functions is rarely used
but symmetry is attractive.

3. Call the non-blocking CMOOSCommClient::Run passing the name (or IP
address) of the machine hosting the DB, the port on which it is listening
(usually 9000 but that can be configured) and the rate at which you want
the communications thread to run in Hz (the default is 5Hz).

4. As soon as calls to CMOOSCommClient::IsConnected start returning
true, you are free to start registering for notifications and posting your
own data, as described in earlier sections. It is a good plan to put your
registration code in the connection callback.

5. In your existing code periodically (perhaps via a timer in a gui application)
call CMOOSCommClient::Fetch to retrieve whatever mail has been deliv-
ered to your application since the last invocation of CMOOSCommClient::Fetch
(the comms object will have been having regular chats with the MOOSDB

in the background while your own code has been doing its thing).

9 Other Bells and Whistles

In releases post 7.0.1 several new methods are available via CMOOSApp .

9.1 Process Status Summaries

Every few seconds CMOOSApp publishes a status string. If the MOOS name of
a process is XYZ then a status string is published under the name XYZ STATUS

. By default the status string is formatted by the virtual member function
std::string CMOOSApp::MakeStatusString() which formats a string con-
taining:

27

• process uptime

• names of all messages published so far

• names of messages currently subscribed to.

By overloading std::string CMOOSApp::MakeStatusString() you can
append or replace the status string with whatever you choose — CMOOSApp will
call your version in preference to its own.

9.2 Automatic Handling of <PROCESSNAME> CMD Messages

It is commonplace to want to have processes monitoring variables which con-
tain instructions on how to behave or which request certain actions — one could
invoke the umbrella term “command messages”. Post release 7.0.1, CMOOSApp
contains some plumbing to manage the handling of such messages. By extending
the API it also helps best practice of using a common message naming policy for
all such messages. By calling CMOOSApp::EnableCommandMessageFiltering(true)
(for example in OnStartup) CMOOSApp will, behind the scenes, peruse incom-
ing mail for messages called XYZ CMD where the XYZ is a capitalised MOOS
Community name of process (the name with which process registers itself with
the DB). If any such messages are found, the virtual function CMOOSApp::OnCommandMsg(CMOOSMsg

Msg) is called. The default implementation does nothing — overload this func-
tion to perform your own customised processing.

The command message filtering facility can also be turned on in any process’s
configuration block by adding the line CatchCommandMessages = true . By
default command message filtering is off.

10 MOOSGenLib Functions

The library MOOSGenLib provides a plethora of functions that tend to be useful
for programs using MOOS. They are quite self explanatory and are best perused
by looking at the MOOSGenLibGlobalHelper.h header file which is included
here for your delectation.

Listing 10: MOOSGenLibGlobalHelper.h - many goodies live here

// ///
//
// MOOS − Miss ion Or iented Operating Su i te
//
// A su i t o f Appl i cat i ons and L i b r a r i e s f o r Mobile Robotics Research
// Copyright (C) 2001−2005 Massachusetts I n s t i t u t e o f Technology and
// Oxford Univer s i ty .
//
// This so f tware was wr i t ten by Paul Newman at MIT 2001−2002 and Oxford
// Univer s i ty 2003−2005. emai l : pnewman@robots . ox . ac . uk .
//
// This f i l e i s part o f a MOOS Core Component .
//
// This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or
// modify i t under the terms o f the GNU General Publ i c L i cense as
// pub l i shed by the Free Sof tware Foundation ; e i t h e r v e r s i on 2 o f the
// License , or (at your option) any l a t e r v e r s i on .
//

28

// This program i s d i s t r i b u t e d in the hope that i t w i l l be use f u l ,
// but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Publ i c L i cense f o r more d e t a i l s .
//
// You should have r e c e i v ed a copy o f the GNU General Publ i c L i cense
// along with t h i s program ; i f not , wr i te to the Free Sof tware
// Foundation , Inc . , 59 Temple Place − Sui te 330 , Boston , MA
// 02111−1307 , USA.
//
// //////////////////////// END GPL //////////////////////////////////
/∗ ! \ f i l e MOOSGenLibGlobalHelper . h ∗/

#ifndef MOOSGenLibGlobalHelperh
#define MOOSGenLibGlobalHelperh

#ifndef PI
#define PI 3.141592653589
#endif

#include <s t r i ng>

#include < l i s t >

#include <vector >

#include <sstream>

#include <algor i thm>

// //////////////////// STRING MANIPULATION/EXTRATION TOOLS
///////////////////////////////

typedef std : : l i s t <std : : s t r i ng> STRING LIST ;

// f i nd the l o c a t i o n o f sToken in a s t r i n g sSource with or without case
s e n s i t i v i t y

s i z e t MOOSStrFind (const std : : s t r i n g &sSource , const std : : s t r i n g & sToken , bool

b In s e n s i t i v e=fa l se) ;

// f o l l ow i ng f unc t i on f i n d s token = value in a l i s t o f such s t r i n g s
bool MOOSGetValueFromToken(STRING LIST & sParams , const std : : s t r i n g & sToken , std : :

s t r i n g & sVal) ;

// f o l l ow i ng f unc t i on s ex t r a c t a value from a s t r i n g conta in ing comma seperated
pa i r s o f Token = Val

//by de f au l t case s e n s i t i v i t y on the Token i s o f f . Thus given two s t r i n g s S1=”X=
AbCd” and S2=”x=AbCd” ,

// invoking MOOSValFromString (s , S1 , ” x” , t rue) and MOOSValFromString (s , S2 , ” x” , t rue)
with both i n s e r t ”AbCd” i n to s

bool MOOSValFromString (std : : s t r i n g & sVal , const std : : s t r i n g & sStr , const std : :
s t r i n g & sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (double & dfVal , const std : : s t r i n g & sStr , const std : : s t r i n g
& sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (f loat & fVal , const std : : s t r i n g & sStr , const std : : s t r i n g
& sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (long & nVal , const std : : s t r i n g & sStr , const std : : s t r i n g
& sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (int & nVal , const std : : s t r i n g & sStr , const std : : s t r i n g
& sTk , bool b In s e n s i t i v e=fa l se) ;

29

bool MOOSValFromString (bool & bVal , const std : : s t r i n g & sStr , const std : : s t r i n g
& sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (unsigned int & nVal , const std : : s t r i n g & sStr , const std : :
s t r i n g & sTk , bool b In s e n s i t i v e=fa l se) ;

bool MOOSValFromString (std : : vector<double> &dfValVec , int &nRows , int &nCols , const

std : : s t r i n g & sStr , const std : : s t r i n g & sToken , bool b In s e n s i t i v e=fa l se) ;
bool MOOSValFromString (std : : vector<unsigned int> &nValVec , int &nRows , int &nCols

, const std : : s t r i n g & sStr , const std : : s t r i n g & sToken , bool b In s e n s i t i v e=
fa l se) ;

// the f o l l ow i ng simply parse a MOOSFormated vector [nxm] { a , b , c . . . }
bool MOOSVectorFromString (const std : : s t r i n g & sStr , s td : : vector <double> & dfVecVal

, int & nRows , int & nCols) ;
bool MOOSVectorFromString (const std : : s t r i n g & sStr , s td : : vector <f loat> & fValVec ,

int & nRows , int & nCols) ;
bool MOOSVectorFromString (const std : : s t r i n g & sStr , s td : : vector <unsigned int> &

dfVecVal , int & nRows , int & nCols) ;

/∗∗ wr i te a std : : vector <double> to a s t r i n g (us ing MOOS Notation) ∗/
std : : s t r i n g DoubleVector2Str ing (const std : : vector <double> & V) ;

/∗∗ wr i te a std : : vector <double> to a s t r ings t r eam (us ing MOOS Notation) ∗/
std : : s t r i ngs t r eam & Write (std : : s t r i ngs t r eam & os , const std : : vector <double> & Vec

) ;

/∗∗ wr i te a std : : vector <int> to a s t r ings t r eam (us ing MOOS Notation) ∗/
std : : s t r i ngs t r eam & Write (std : : s t r i ngs t r eam & os , const std : : vector <int> & Vec) ;

// the ub iqu i tous chomp func t i on
std : : s t r i n g MOOSChomp(std : : s t r i n g &sStr , const std : : s t r i n g &sTk="," ,bool

b In s e n s i t i v e=fa l se) ;

/∗∗ remove a l l cha r a c t e r s in sTok from sStr ∗/
void MOOSRemoveChars(std : : s t r i n g & sStr , const std : : s t r i n g & sTok) ;

/∗∗ convert s t r i n g to upper case ∗/
void MOOSToUpper(std : : s t r i n g &s t r) ;

/∗∗ remove white space form s t a r t and end of a s t r i n g ∗/
void MOOSTrimWhiteSpace (std : : s t r i n g & s t r) ;

/∗∗ returbn true i f numeric ∗/
bool MOOSIsNumeric(std : : s t r i n g s t r) ;

/∗∗ case i n s e n s i t i v e s t r i n g comparison . r e tu r n s t rue i f equal ∗/
bool MOOSStrCmp(std : : s t r i n g s1 , std : : s t r i n g s2) ;

/∗∗ pattern matching us ing ∗ and ? . r e tu r n s t rue i f sPattern matches sS t r i ng ∗/
bool MOOSWildCmp(const std : : s t r i n g & sPattern , const std : : s t r i n g & sS t r i ng) ;

// //////////////////// TIMING TOOLS ///////////////////////////////

/∗∗ gene r i c t iming f unc t i on s ∗/
double GetMOOSSkew () ;
void SetMOOSSkew(double dfSkew) ;

/∗∗ r e turn the o f f s e t between DB time and c l i e n t time ∗/
double GetMOOSSkew () ;

30

/∗∗ s e t the r a t e at which time i s a c c e l e r a t ed (from s t a r t o f unix time) ∗/
bool SetMOOSTimeWarp (double dfWarp) ;

/∗∗ r e turn the cur r ent time warp f a c t o r ∗/
double GetMOOSTimeWarp () ;

/∗∗pause f o r nMS m i l l i s e c ond s ∗/
void MOOSPause(int nMS, bool bApplyTimeWarping = true) ;

/∗∗ r e turn time as a double (time s i n c e unix in seconds) . This w i l l
a l s o apply a skew to t h i s time so that a l l p r o c e s s e s connected to a

MOOSCommsServer (o f ten in the
shap o f a DB) w i l l have a un i f i e d time . Of cour se i f your p r o c e s s i s n ’ t us ing

MOOSComms
at a l l t h i s funt i on works j u s t f i n e and r e tu rn s the unadu l te r ated time as you

would expect ∗∗/
double MOOSTime(bool bApplyTimeWarping=true) ;

/∗∗ c a l l t h i s to d i s a b l e or anble high p r e c i s i o n windows t imer s . By de f au l t they
are on and always used in

c a l l s to MOOSTime() ∗/
bool SetWin32HighPrecis ionTiming (bool bEnable) ;

/∗∗ r e turn high p r e c i s i o n timestamp − time s i n c e unix in seconds only has high
p r e c i s i o n in win32 ∗/

double HPMOOSTime(bool bApplyTimeWarping = true) ;

/∗∗ Return time as a double (time s i n c e unix in seconds) . This r e t u r n s the time
as r epor ted by the l o c a l c l ock . I t w i l l ∗not ∗ r e turn time at the Comms Server ,
as MOOSTime t r i e s to do . ∗∗/

double MOOSLocalTime(bool bApplyTimeWarping=true) ;

/∗∗ u s e f u l keyboard trap ∗/
int MOOSGetch () ;

// //////////////////// OUTPUT TOOLS ///////////////////////////////
// formatted p r i n t i ng
/∗∗ pr i n t a s t r i n g ∗/
void MOOSTrace(std : : s t r i n g Str) ;

/∗∗ pr i n t a formatted s t r i n g (with p r i n t f− l i k e format codes) and to debug window
in DevStudio ∗/

void MOOSTrace(const char ∗FmtStr , . . .) ;

/∗∗ r e turn a formatted s t r i n g (with p r i n t f− l i k e format codes ∗/
std : : s t r i n g MOOSFormat(const char ∗ FmtStr , . . .) ;

/∗∗ I n h i b i t (enable) MOOSTracing in the c a l l i n g thread ∗/
void InhibitMOOSTraceInThisThread(bool b Inh i b i t = true) ;

/∗∗ l i k e MOOSTrace but r e tu r n s f a l s e − u s e f u l f o r r e turn statements ∗/
bool MOOSFail(const char ∗ FmtStr , . . .) ;

/∗∗ r e turn n i c e l y formatted time stamp s t r i n g ∗/
std : : s t r i n g MOOSGetTimeStampString () ;

/∗∗ get the cur r ent date formatted n i c e l y ∗/
std : : s t r i n g MOOSGetDate () ;

/∗∗ u s e f u l macro f o r debugging p r i n t s l i n e and f i l e ∗/

31

#define MOOSHERE MOOSFormat("File %s Line %d" , FILE , LINE) . c s t r ()

/∗∗ pr i n t a p r og r e s s bar − dfPC i s the per cent o f a job completed ∗/
void Progr es s (double dfPC) ;

// these are used to l e t people format s t r i n g used to con t r o l
// actuat i on (v i a a Thirdparty task) − one has to ques t i on why they are here

though . .
s td : : s t r i n g MOOSThirdPartyActuationString(double ∗ pdfRudder , double ∗ pdfElevator

, double ∗ pdfThrust) ;
s td : : s t r i n g MOOSThirdPartyStatusString(std : : s t r i n g sStatusCommand) ;

// //////////////////// NUMERICAL TOOLS ///////////////////////////////

/∗∗ Bound angle to +/−PI∗/
double MOOS ANGLE WRAP(double dfAng) ;

/∗∗ convert deg to rad ∗/
double MOOSDeg2Rad (double dfDeg) ;

/∗∗ convert rad 2 deg ∗/
double MOOSRad2Deg (double dfRad) ;

/∗∗ Bounds | dfVal | < dfLimit but keeps s i gn . Returns t rue i f i t was clamped ∗/
bool MOOSAbsLimit (double & dfVal , double dfLimit) ;

/∗∗ r e tu r n s sample fom Gaussian p r oc e s s s t r ength Sigma mena zer o ∗/
double MOOSWhiteNoise (double Sigma) ;

/∗∗ r e tu r n s x f o r probab l i ty mass such p(v<=x) = dfArea) ∗/
double MOOSNormalInv (double dfArea) ;

/∗∗ generates uniform no i s e in i n t e g e r s between i n t e r v a l nMin−>nMax ∗/
int MOOSDiscreteUniform (int nMin , int nMax) ;

/∗∗ generates uniform no i s e in i n t e r v a l dfMin−dfMax ∗/
double MOOSUniformRandom(double dfMin , double dfMax) ;

/∗∗ Clamps a templated type between two va lues ∗/
template <class T>

const T& MOOSClamp(const T &val , const T &min , const T &max)
{

i f (va l < min) return min ;
i f (max < va l) return max ;
else return va l ;

}

// //////////////////// FILE SYSTEM TOOLS ///////////////////////////////

/∗∗ f i l l s i n a s t r i n g l i s t o f a l l r e gu l a r f i l e s found in s p e c f i e d path
i f bF i l e s==true only f i l e s are returned , i f bF i l e s = f a l s e only d i r e c t o r i e s
are returned ∗/
bool GetDirectoryContents (const std : : s t r i n g & sPath , std : : l i s t <std : : s t r i ng> &

sContents , bool bF i l e s= true) ;

/∗∗ make a d i r e c to r y ∗/
bool MOOSCreateDirectory(const std : : s t r i n g & sDi r ectory) ;

/∗∗ s p l i t s a f u l l y q u a l i f i e d path i n to par ts −path , f i l e s t em and extens i on ∗/

32

bool MOOSFileParts (std : : s t r i n g sFul lPath , std : : s t r i n g & sPath , std : : s t r i n g &sF i l e ,
s td : : s t r i n g & sExtens ion) ;

// //////////////////// MISC TOOLS ///////////////////////////////

/∗∗ templated f unc t i on which swaps byte order o f type T return ing i t ∗/
template <class T > T SwapByteOrder (const T &v)
{

T r = v ;
char ∗ aR = (char∗)&r ;
std : : r ev e r s e (aR , aR+s izeof (T)) ;
return r ;

}

/∗∗ r e tu r n s t rue i f cur r ent machine i s l i t t l e end in ∗/
bool I sL i t t l eEnd i an () ;

/∗∗ Functor c l a s s f o r per forming s t a t i c c a s t between two types .
Use i t with s t l : : trans form when copying between two c o l l e c t i o n s
with d i f f e r e n t element types ∗/

template<class D> struct s t a t i c c a s t e r
{

template<class S> D operator () (S s) const { return static cast<D> (s) ; }
} ;

/∗∗ Functor c l a s s f o r per forming dynamic cast between two types .
Use i t with s t l : : trans form when copying between two c o l l e c t i o n s
with d i f f e r e n t element types ∗/

template<class D> struct dynamic caster
{

template<class S> D operator () (S s) const { return dynamic cast<D> (s) ; }
} ;

// adds a token /value pa i r to end o f the supp l i ed s t r i n g s In
template <class T>

std : : s t r i n g & MOOSAddValToString(std : : s t r i n g & sIn , const std : : s t r i n g & sTok ,
const T & Val)

{
std : : s t r i ngs t r eam s ;

i f (! s In . empty ())
s<<"," ;

s<<sTok<<"="<<Val ;

s In+=s . s t r () ;

return s In ;
}

// /////// USEFUL MACRO FOR PREVENTING COMPILER WARNINGS
#ifdef WIN32
#define UNUSED PARAMETER(a) a

33

#else

#define UNUSED PARAMETER(a)
#endif

#endif

34

