

|||;; MITMECHE Simplex Algorithm Overview · Capitalizes on the fact that the optimal solution resides **X**2 at one of the vertices of the feasible space. Objective Function: $z = 20x_1 + 15x_2$ · The number of vertices in real-world problems is unmanageably large. It would not be practical to exhaustively investigate all vertices. (2.25, 8) 10 · Simplex proceeds from one vertex to another neighboring vertex, always improving on the solution. In practice it is very fast. 5 z = 165 Robot IvP Helm Multi-Objective The IvP Optimization IvPBuild IvPBuild IvP . Problems Optimization Optimization Domain ZAIC Tools Reflector Tools Functions l Ro al Fr

I	Optimization in Marin	Optimization in Marine Autonomy		
	In the Linear Programming example, the decision was simply to decide how many chairs, and how many tables to build $(x_1, and x_2)$. In robotic platforms, decision making happens at several levels:			
	Where and when is the next destination?What is our path plan?	Mission Autonomy	Vehicle Agnostic (mostly)	
OUR FOCUS	What are the sequence of heading and speed commands?	Platform Autonomy		
	What are the sequence of rudder and thrust commands?	Platform Control	Vehicle Dependent (mostly)	
Optimization Problems Multi-Objective Optimization Robot IvP Helm Optimization The IvP Domain IvP Functions IvPBuild ZAIC Tools IvPBuild Reflector Tools				

С	1
Э	_

	Multi-Objective Optimization Concept introduction		n IIII		
 Multiple objective functions over the same decision space. Metrics are typically uncorrelated – optimizing apples vs. oranges. Let's return to the furniture example: It has single objective function – to maximize revenue: 					
Objective Function fuction	: maximize subject to:	$z = 20x_1 + 15x_2$ $x_2 <= 8$ $2x_1 - x_2 <= 0$ $2x_1 + x_2 <= 12.5$ $x_1 = 0$ $x_2 >= 0$	objective		
The Oakwood Furniture Company has 12.5 units of wood on hand from which to manufacture tables and chairs. Making a table uses two units of wood and making a chair uses one unit. Oakwood's distributor will pay \$20 for each table and \$15 for each chair, but he will not accept more than eight chairs and he wants at least twice as many chairs as tables. How many tables and chairs should the company produce to maximize revenue?					
Question: What if Oakwood also wants to maximize market presence? In other words, sell as many items as possible, chairs or tables.					
Optimization Problems Michael Benjamin, ©2024	Robot IvP Helm Optimization	The IvP Ivf Domain Funct	tions IvPBuild ZAIC Tools MIT Dept of Mechanical Engineering		

MITMECHE Multi-Objective Optimization Definition · A multi-objective optimization problems may be expressed as min $f_1(x), f_2(x), \dots f_n(x)$ efficienc Ο Typically, there is no definitive solution to this Pareto efficiency problem, but rather a family of solutions -Ū Pareto Optimal solutions. •× Market D Share A Pareto optimal solution is one where improvement on one objective function cannot be achieved without sacrificing performance on ብ another objective function. Pareto Efficiency A Pareto Optimal solution is also called a non-dominated solution. Revenue Multi-Objective Robot IvP Helm The IvP IvPBuild Optimization IvP IvPBuild Problems Domain ZAIC Tools Optimization Optimization **Reflector Tools** Functions Mic el Be al Fr

		Pareto Optimality Simple Example	141iT	
Your goa • Pays v • Close	al after graduation is to find a vell to where your significant oth	a job that both: er lives.	Dominated choices	
	Company	Salary	Distance	
	iRobot	\$65,000	37 miles	
	Bluefin Robotics	\$86,000	55 miles	
Dominates:	Clearpath Robotics	\$102,000	342 miles	
	Rethink Robotics	\$82,000	55 miles	
,	Robotic Marine Systems	\$47,000	65 miles	
	Jaybridge Robotics	\$54,000	119 miles	
	Boston Dynamics	\$92,000	76 miles	
Dominates:	Black-I Robotics	\$84,000	122 miles	
	Honeybee Robotics	\$39,000	144 miles	
	Friendly Robotics	\$69,000	94 miles	
Optimization Problems Michael Benjamin, ©2024	Multi-Objective Optimization Robot IvP Helm Optimization	The IvP Domain	IVP Functions IvPBuild ZAIC Tools MIT Dept of Mechanical Engineeri	

	The IvPDomain Defining the domain in the mission file	141iT			
The IvPDomain is defined in the pHelmIvP configuration block in the mission.moos configuration file:					
	<pre>ProcessConfig = pHelmIvP { AppTick = 4 CommsTick = 4 Behaviors = charlie.bhv Verbose = true Domain = course:0:359:360 Domain = speed:0:4:21 Domain = depth:0:490:491 }</pre>	3,711,960 possible decisions			
The above dom: • The course val • The speed var • The depth vari All helm behavi	ain has three decision variables, course, speed, and riable has 360 choices ranging from 0 to 359 degrees able has 21 choices ranging from 0 to 4 meters per able has 491 choices ranging from 0 to 490 meters. ors must reason over one or all of these three variab	depth. s. sec. oles.			
Optimization Problems Michael Benjamin, ©2024	Robot IvP Helm The IvP IvP Optimization Domain Functions	IvPBuild ZAIC Tools MIT Dept of Mechanical Engineering			

	IvP Sub-Domains The subDomain() Utility Function			
	The subDomain() utility function may be used to create a proper subdomain of another given IvPDomain:			
	Defined in lib_ivpbuild/BuildUtils.h			
		<pre>IvPDomain subDomain(IvPDomain, string);</pre>		
	01	// Behavior Constructor		
	02	BHV_SimpleWaypoint::BHV_SimpleWaypoint(IvPDomain domain) : \		
	03	IvPBehavior (domain)		
	04	{		
	05	<pre>m_domain = subDomain(m_domain, "course, speed");</pre>		
	06	<pre>addInfoVars("NAV_X, NAV_Y");</pre>		
	07	}		
Optimization Problems Michael Benjamin, ©2024	Mul Op	ti-Objective otimization Phenm The IVP Domain Functions IVPBuild ZAIC Tools MIT Dept of Mechanical Engineering		
55				

	IvP Sub-Domains The subDomain() Utility Function	1411		
	If the domain variables specified in the subDomain() call are not in the given domain, the returned domain will be empty.			
	<pre>m_domain = subDomain(m_domain, "course, speed"); if(m_domain.size() == 0) return(false);</pre>			
Optimization Problems Michael Benjamin, ©2024	Multi-Objective Optimization Optimization The IvP Domain Functions ZAIC Tools MIT	IvPBuild Reflector Tools		

	The IvPBuild Toolbox General Usage Pattern	
Recall The IvPBuild Toolbox Pipeline		
1. Create a BuildTool instance.	01 02 03	<pre>ZAIC_PEAK zaic_peak(domain, "depth"); zaic peak.setSummit(150);</pre>
2. Pass IvPDomain to the tool. ^{IvPDomain}	04 05 06	<pre>zaic_peak.setMinMaxUtil(20, 120); zaic_peak.setBaseWidth(60);</pre>
3. Pass Parameters to the tool. Params	→ Build Tool	<pre>IvPFunction *ipf = 0; ipf = zaic_peak.extractIvPFunction();</pre>
4. Extract the IvP Function.	Build Tool	01 Create the ZAIC instance, passing the overall IvPDoman and particular variable.
	03	 Set the desired ZAIC parameters. Extracting the IvPFunction from the ZAIC tool.
Optimization Problems Michael Benjamin, ©2024	Helm The IvP Domain	IVP Functions IVPBuild ZAIC Tools MIT Dept of Mechanical Engineering

L.	The Reflector Tool Example Code Usage	14 1 7			
A typ of an	ical code structure (usually found in the implementation IvP Behavior)				
01 02 03 04 05 06 07 08 09	<pre>AOF_Gaussian aof(ivp_domain); aof.setParam("xcent", 50); aof.setParam("ycent", -150); aof.setParam("sigma", 32.4); aof.setParam("range", 150); OF_Reflector reflector(aof); int pieces created = reflector.create(1000);</pre>	f(x,y) Underlying Function y x			
10 IvPFunction *ipf = reflector.extractIvPFunction(); 01 Create an underlying objective function given an IvP Domain 02-05 Parameterize the underlying function 07 Create a reflector 09 Direct the reflector to create an approximation with 1000 pieces 10 Extract the objective function					
Optimizat Problem Michael Benjam	Optimization Problems Multi-Objective Optimization Robot IvP Helm Optimization The IvP Domain IvP Functions IvPBuild ZAIC Tools IvPBuild Reflector Tools Michael Benjamin ©2024 Milt Port of Mechanical Engineering Milt Port of Mechanical Engineering Milt Port of Mechanical Engineering				

